aws_sdk_sagemaker/operation/create_transform_job/
builders.rs

1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_transform_job::_create_transform_job_output::CreateTransformJobOutputBuilder;
3
4pub use crate::operation::create_transform_job::_create_transform_job_input::CreateTransformJobInputBuilder;
5
6impl crate::operation::create_transform_job::builders::CreateTransformJobInputBuilder {
7    /// Sends a request with this input using the given client.
8    pub async fn send_with(
9        self,
10        client: &crate::Client,
11    ) -> ::std::result::Result<
12        crate::operation::create_transform_job::CreateTransformJobOutput,
13        ::aws_smithy_runtime_api::client::result::SdkError<
14            crate::operation::create_transform_job::CreateTransformJobError,
15            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16        >,
17    > {
18        let mut fluent_builder = client.create_transform_job();
19        fluent_builder.inner = self;
20        fluent_builder.send().await
21    }
22}
23/// Fluent builder constructing a request to `CreateTransformJob`.
24///
25/// <p>Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.</p>
26/// <p>To perform batch transformations, you create a transform job and use the data that you have readily available.</p>
27/// <p>In the request body, you provide the following:</p>
28/// <ul>
29/// <li>
30/// <p><code>TransformJobName</code> - Identifies the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p></li>
31/// <li>
32/// <p><code>ModelName</code> - Identifies the model to use. <code>ModelName</code> must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services account. For information on creating a model, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html">CreateModel</a>.</p></li>
33/// <li>
34/// <p><code>TransformInput</code> - Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p></li>
35/// <li>
36/// <p><code>TransformOutput</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p></li>
37/// <li>
38/// <p><code>TransformResources</code> - Identifies the ML compute instances and AMI image versions for the transform job.</p></li>
39/// </ul>
40/// <p>For more information about how batch transformation works, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">Batch Transform</a>.</p>
41#[derive(::std::clone::Clone, ::std::fmt::Debug)]
42pub struct CreateTransformJobFluentBuilder {
43    handle: ::std::sync::Arc<crate::client::Handle>,
44    inner: crate::operation::create_transform_job::builders::CreateTransformJobInputBuilder,
45    config_override: ::std::option::Option<crate::config::Builder>,
46}
47impl
48    crate::client::customize::internal::CustomizableSend<
49        crate::operation::create_transform_job::CreateTransformJobOutput,
50        crate::operation::create_transform_job::CreateTransformJobError,
51    > for CreateTransformJobFluentBuilder
52{
53    fn send(
54        self,
55        config_override: crate::config::Builder,
56    ) -> crate::client::customize::internal::BoxFuture<
57        crate::client::customize::internal::SendResult<
58            crate::operation::create_transform_job::CreateTransformJobOutput,
59            crate::operation::create_transform_job::CreateTransformJobError,
60        >,
61    > {
62        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
63    }
64}
65impl CreateTransformJobFluentBuilder {
66    /// Creates a new `CreateTransformJobFluentBuilder`.
67    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
68        Self {
69            handle,
70            inner: ::std::default::Default::default(),
71            config_override: ::std::option::Option::None,
72        }
73    }
74    /// Access the CreateTransformJob as a reference.
75    pub fn as_input(&self) -> &crate::operation::create_transform_job::builders::CreateTransformJobInputBuilder {
76        &self.inner
77    }
78    /// Sends the request and returns the response.
79    ///
80    /// If an error occurs, an `SdkError` will be returned with additional details that
81    /// can be matched against.
82    ///
83    /// By default, any retryable failures will be retried twice. Retry behavior
84    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
85    /// set when configuring the client.
86    pub async fn send(
87        self,
88    ) -> ::std::result::Result<
89        crate::operation::create_transform_job::CreateTransformJobOutput,
90        ::aws_smithy_runtime_api::client::result::SdkError<
91            crate::operation::create_transform_job::CreateTransformJobError,
92            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
93        >,
94    > {
95        let input = self
96            .inner
97            .build()
98            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
99        let runtime_plugins = crate::operation::create_transform_job::CreateTransformJob::operation_runtime_plugins(
100            self.handle.runtime_plugins.clone(),
101            &self.handle.conf,
102            self.config_override,
103        );
104        crate::operation::create_transform_job::CreateTransformJob::orchestrate(&runtime_plugins, input).await
105    }
106
107    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
108    pub fn customize(
109        self,
110    ) -> crate::client::customize::CustomizableOperation<
111        crate::operation::create_transform_job::CreateTransformJobOutput,
112        crate::operation::create_transform_job::CreateTransformJobError,
113        Self,
114    > {
115        crate::client::customize::CustomizableOperation::new(self)
116    }
117    pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
118        self.set_config_override(::std::option::Option::Some(config_override.into()));
119        self
120    }
121
122    pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
123        self.config_override = config_override;
124        self
125    }
126    /// <p>The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
127    pub fn transform_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
128        self.inner = self.inner.transform_job_name(input.into());
129        self
130    }
131    /// <p>The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
132    pub fn set_transform_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
133        self.inner = self.inner.set_transform_job_name(input);
134        self
135    }
136    /// <p>The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
137    pub fn get_transform_job_name(&self) -> &::std::option::Option<::std::string::String> {
138        self.inner.get_transform_job_name()
139    }
140    /// <p>The name of the model that you want to use for the transform job. <code>ModelName</code> must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.</p>
141    pub fn model_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
142        self.inner = self.inner.model_name(input.into());
143        self
144    }
145    /// <p>The name of the model that you want to use for the transform job. <code>ModelName</code> must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.</p>
146    pub fn set_model_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
147        self.inner = self.inner.set_model_name(input);
148        self
149    }
150    /// <p>The name of the model that you want to use for the transform job. <code>ModelName</code> must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.</p>
151    pub fn get_model_name(&self) -> &::std::option::Option<::std::string::String> {
152        self.inner.get_model_name()
153    }
154    /// <p>The maximum number of parallel requests that can be sent to each instance in a transform job. If <code>MaxConcurrentTransforms</code> is set to <code>0</code> or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is <code>1</code>. For more information on execution-parameters, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests">How Containers Serve Requests</a>. For built-in algorithms, you don't need to set a value for <code>MaxConcurrentTransforms</code>.</p>
155    pub fn max_concurrent_transforms(mut self, input: i32) -> Self {
156        self.inner = self.inner.max_concurrent_transforms(input);
157        self
158    }
159    /// <p>The maximum number of parallel requests that can be sent to each instance in a transform job. If <code>MaxConcurrentTransforms</code> is set to <code>0</code> or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is <code>1</code>. For more information on execution-parameters, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests">How Containers Serve Requests</a>. For built-in algorithms, you don't need to set a value for <code>MaxConcurrentTransforms</code>.</p>
160    pub fn set_max_concurrent_transforms(mut self, input: ::std::option::Option<i32>) -> Self {
161        self.inner = self.inner.set_max_concurrent_transforms(input);
162        self
163    }
164    /// <p>The maximum number of parallel requests that can be sent to each instance in a transform job. If <code>MaxConcurrentTransforms</code> is set to <code>0</code> or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is <code>1</code>. For more information on execution-parameters, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests">How Containers Serve Requests</a>. For built-in algorithms, you don't need to set a value for <code>MaxConcurrentTransforms</code>.</p>
165    pub fn get_max_concurrent_transforms(&self) -> &::std::option::Option<i32> {
166        self.inner.get_max_concurrent_transforms()
167    }
168    /// <p>Configures the timeout and maximum number of retries for processing a transform job invocation.</p>
169    pub fn model_client_config(mut self, input: crate::types::ModelClientConfig) -> Self {
170        self.inner = self.inner.model_client_config(input);
171        self
172    }
173    /// <p>Configures the timeout and maximum number of retries for processing a transform job invocation.</p>
174    pub fn set_model_client_config(mut self, input: ::std::option::Option<crate::types::ModelClientConfig>) -> Self {
175        self.inner = self.inner.set_model_client_config(input);
176        self
177    }
178    /// <p>Configures the timeout and maximum number of retries for processing a transform job invocation.</p>
179    pub fn get_model_client_config(&self) -> &::std::option::Option<crate::types::ModelClientConfig> {
180        self.inner.get_model_client_config()
181    }
182    /// <p>The maximum allowed size of the payload, in MB. A <i>payload</i> is the data portion of a record (without metadata). The value in <code>MaxPayloadInMB</code> must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is <code>6</code> MB.</p>
183    /// <p>The value of <code>MaxPayloadInMB</code> cannot be greater than 100 MB. If you specify the <code>MaxConcurrentTransforms</code> parameter, the value of <code>(MaxConcurrentTransforms * MaxPayloadInMB)</code> also cannot exceed 100 MB.</p>
184    /// <p>For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to <code>0</code>. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.</p>
185    pub fn max_payload_in_mb(mut self, input: i32) -> Self {
186        self.inner = self.inner.max_payload_in_mb(input);
187        self
188    }
189    /// <p>The maximum allowed size of the payload, in MB. A <i>payload</i> is the data portion of a record (without metadata). The value in <code>MaxPayloadInMB</code> must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is <code>6</code> MB.</p>
190    /// <p>The value of <code>MaxPayloadInMB</code> cannot be greater than 100 MB. If you specify the <code>MaxConcurrentTransforms</code> parameter, the value of <code>(MaxConcurrentTransforms * MaxPayloadInMB)</code> also cannot exceed 100 MB.</p>
191    /// <p>For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to <code>0</code>. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.</p>
192    pub fn set_max_payload_in_mb(mut self, input: ::std::option::Option<i32>) -> Self {
193        self.inner = self.inner.set_max_payload_in_mb(input);
194        self
195    }
196    /// <p>The maximum allowed size of the payload, in MB. A <i>payload</i> is the data portion of a record (without metadata). The value in <code>MaxPayloadInMB</code> must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is <code>6</code> MB.</p>
197    /// <p>The value of <code>MaxPayloadInMB</code> cannot be greater than 100 MB. If you specify the <code>MaxConcurrentTransforms</code> parameter, the value of <code>(MaxConcurrentTransforms * MaxPayloadInMB)</code> also cannot exceed 100 MB.</p>
198    /// <p>For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to <code>0</code>. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.</p>
199    pub fn get_max_payload_in_mb(&self) -> &::std::option::Option<i32> {
200        self.inner.get_max_payload_in_mb()
201    }
202    /// <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i></i> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.</p>
203    /// <p>To enable the batch strategy, you must set the <code>SplitType</code> property to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p>
204    /// <p>To use only one record when making an HTTP invocation request to a container, set <code>BatchStrategy</code> to <code>SingleRecord</code> and <code>SplitType</code> to <code>Line</code>.</p>
205    /// <p>To fit as many records in a mini-batch as can fit within the <code>MaxPayloadInMB</code> limit, set <code>BatchStrategy</code> to <code>MultiRecord</code> and <code>SplitType</code> to <code>Line</code>.</p>
206    pub fn batch_strategy(mut self, input: crate::types::BatchStrategy) -> Self {
207        self.inner = self.inner.batch_strategy(input);
208        self
209    }
210    /// <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i></i> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.</p>
211    /// <p>To enable the batch strategy, you must set the <code>SplitType</code> property to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p>
212    /// <p>To use only one record when making an HTTP invocation request to a container, set <code>BatchStrategy</code> to <code>SingleRecord</code> and <code>SplitType</code> to <code>Line</code>.</p>
213    /// <p>To fit as many records in a mini-batch as can fit within the <code>MaxPayloadInMB</code> limit, set <code>BatchStrategy</code> to <code>MultiRecord</code> and <code>SplitType</code> to <code>Line</code>.</p>
214    pub fn set_batch_strategy(mut self, input: ::std::option::Option<crate::types::BatchStrategy>) -> Self {
215        self.inner = self.inner.set_batch_strategy(input);
216        self
217    }
218    /// <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i></i> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.</p>
219    /// <p>To enable the batch strategy, you must set the <code>SplitType</code> property to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p>
220    /// <p>To use only one record when making an HTTP invocation request to a container, set <code>BatchStrategy</code> to <code>SingleRecord</code> and <code>SplitType</code> to <code>Line</code>.</p>
221    /// <p>To fit as many records in a mini-batch as can fit within the <code>MaxPayloadInMB</code> limit, set <code>BatchStrategy</code> to <code>MultiRecord</code> and <code>SplitType</code> to <code>Line</code>.</p>
222    pub fn get_batch_strategy(&self) -> &::std::option::Option<crate::types::BatchStrategy> {
223        self.inner.get_batch_strategy()
224    }
225    ///
226    /// Adds a key-value pair to `Environment`.
227    ///
228    /// To override the contents of this collection use [`set_environment`](Self::set_environment).
229    ///
230    /// <p>The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.</p>
231    pub fn environment(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
232        self.inner = self.inner.environment(k.into(), v.into());
233        self
234    }
235    /// <p>The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.</p>
236    pub fn set_environment(
237        mut self,
238        input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
239    ) -> Self {
240        self.inner = self.inner.set_environment(input);
241        self
242    }
243    /// <p>The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.</p>
244    pub fn get_environment(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
245        self.inner.get_environment()
246    }
247    /// <p>Describes the input source and the way the transform job consumes it.</p>
248    pub fn transform_input(mut self, input: crate::types::TransformInput) -> Self {
249        self.inner = self.inner.transform_input(input);
250        self
251    }
252    /// <p>Describes the input source and the way the transform job consumes it.</p>
253    pub fn set_transform_input(mut self, input: ::std::option::Option<crate::types::TransformInput>) -> Self {
254        self.inner = self.inner.set_transform_input(input);
255        self
256    }
257    /// <p>Describes the input source and the way the transform job consumes it.</p>
258    pub fn get_transform_input(&self) -> &::std::option::Option<crate::types::TransformInput> {
259        self.inner.get_transform_input()
260    }
261    /// <p>Describes the results of the transform job.</p>
262    pub fn transform_output(mut self, input: crate::types::TransformOutput) -> Self {
263        self.inner = self.inner.transform_output(input);
264        self
265    }
266    /// <p>Describes the results of the transform job.</p>
267    pub fn set_transform_output(mut self, input: ::std::option::Option<crate::types::TransformOutput>) -> Self {
268        self.inner = self.inner.set_transform_output(input);
269        self
270    }
271    /// <p>Describes the results of the transform job.</p>
272    pub fn get_transform_output(&self) -> &::std::option::Option<crate::types::TransformOutput> {
273        self.inner.get_transform_output()
274    }
275    /// <p>Configuration to control how SageMaker captures inference data.</p>
276    pub fn data_capture_config(mut self, input: crate::types::BatchDataCaptureConfig) -> Self {
277        self.inner = self.inner.data_capture_config(input);
278        self
279    }
280    /// <p>Configuration to control how SageMaker captures inference data.</p>
281    pub fn set_data_capture_config(mut self, input: ::std::option::Option<crate::types::BatchDataCaptureConfig>) -> Self {
282        self.inner = self.inner.set_data_capture_config(input);
283        self
284    }
285    /// <p>Configuration to control how SageMaker captures inference data.</p>
286    pub fn get_data_capture_config(&self) -> &::std::option::Option<crate::types::BatchDataCaptureConfig> {
287        self.inner.get_data_capture_config()
288    }
289    /// <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p>
290    pub fn transform_resources(mut self, input: crate::types::TransformResources) -> Self {
291        self.inner = self.inner.transform_resources(input);
292        self
293    }
294    /// <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p>
295    pub fn set_transform_resources(mut self, input: ::std::option::Option<crate::types::TransformResources>) -> Self {
296        self.inner = self.inner.set_transform_resources(input);
297        self
298    }
299    /// <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p>
300    pub fn get_transform_resources(&self) -> &::std::option::Option<crate::types::TransformResources> {
301        self.inner.get_transform_resources()
302    }
303    /// <p>The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html">Associate Prediction Results with their Corresponding Input Records</a>.</p>
304    pub fn data_processing(mut self, input: crate::types::DataProcessing) -> Self {
305        self.inner = self.inner.data_processing(input);
306        self
307    }
308    /// <p>The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html">Associate Prediction Results with their Corresponding Input Records</a>.</p>
309    pub fn set_data_processing(mut self, input: ::std::option::Option<crate::types::DataProcessing>) -> Self {
310        self.inner = self.inner.set_data_processing(input);
311        self
312    }
313    /// <p>The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html">Associate Prediction Results with their Corresponding Input Records</a>.</p>
314    pub fn get_data_processing(&self) -> &::std::option::Option<crate::types::DataProcessing> {
315        self.inner.get_data_processing()
316    }
317    ///
318    /// Appends an item to `Tags`.
319    ///
320    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
321    ///
322    /// <p>(Optional) An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost Management User Guide</i>.</p>
323    pub fn tags(mut self, input: crate::types::Tag) -> Self {
324        self.inner = self.inner.tags(input);
325        self
326    }
327    /// <p>(Optional) An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost Management User Guide</i>.</p>
328    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
329        self.inner = self.inner.set_tags(input);
330        self
331    }
332    /// <p>(Optional) An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost Management User Guide</i>.</p>
333    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
334        self.inner.get_tags()
335    }
336    /// <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p>
337    /// <ul>
338    /// <li>
339    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a></p></li>
340    /// <li>
341    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a></p></li>
342    /// <li>
343    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a></p></li>
344    /// </ul>
345    pub fn experiment_config(mut self, input: crate::types::ExperimentConfig) -> Self {
346        self.inner = self.inner.experiment_config(input);
347        self
348    }
349    /// <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p>
350    /// <ul>
351    /// <li>
352    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a></p></li>
353    /// <li>
354    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a></p></li>
355    /// <li>
356    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a></p></li>
357    /// </ul>
358    pub fn set_experiment_config(mut self, input: ::std::option::Option<crate::types::ExperimentConfig>) -> Self {
359        self.inner = self.inner.set_experiment_config(input);
360        self
361    }
362    /// <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p>
363    /// <ul>
364    /// <li>
365    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a></p></li>
366    /// <li>
367    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a></p></li>
368    /// <li>
369    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a></p></li>
370    /// </ul>
371    pub fn get_experiment_config(&self) -> &::std::option::Option<crate::types::ExperimentConfig> {
372        self.inner.get_experiment_config()
373    }
374}