aws_sdk_sagemaker/operation/create_training_job/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_training_job::_create_training_job_output::CreateTrainingJobOutputBuilder;
3
4pub use crate::operation::create_training_job::_create_training_job_input::CreateTrainingJobInputBuilder;
5
6impl crate::operation::create_training_job::builders::CreateTrainingJobInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_training_job::CreateTrainingJobOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_training_job::CreateTrainingJobError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_training_job();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreateTrainingJob`.
24///
25/// <p>Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.</p>
26/// <p>If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference.</p>
27/// <p>In the request body, you provide the following:</p>
28/// <ul>
29/// <li>
30/// <p><code>AlgorithmSpecification</code> - Identifies the training algorithm to use.</p></li>
31/// <li>
32/// <p><code>HyperParameters</code> - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p><important>
33/// <p>Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.</p>
34/// </important></li>
35/// <li>
36/// <p><code>InputDataConfig</code> - Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored.</p></li>
37/// <li>
38/// <p><code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training.</p></li>
39/// <li>
40/// <p><code>ResourceConfig</code> - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.</p></li>
41/// <li>
42/// <p><code>EnableManagedSpotTraining</code> - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed Spot Training</a>.</p></li>
43/// <li>
44/// <p><code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training.</p></li>
45/// <li>
46/// <p><code>StoppingCondition</code> - To help cap training costs, use <code>MaxRuntimeInSeconds</code> to set a time limit for training. Use <code>MaxWaitTimeInSeconds</code> to specify how long a managed spot training job has to complete.</p></li>
47/// <li>
48/// <p><code>Environment</code> - The environment variables to set in the Docker container.</p></li>
49/// <li>
50/// <p><code>RetryStrategy</code> - The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p></li>
51/// </ul>
52/// <p>For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>.</p>
53#[derive(::std::clone::Clone, ::std::fmt::Debug)]
54pub struct CreateTrainingJobFluentBuilder {
55 handle: ::std::sync::Arc<crate::client::Handle>,
56 inner: crate::operation::create_training_job::builders::CreateTrainingJobInputBuilder,
57 config_override: ::std::option::Option<crate::config::Builder>,
58}
59impl
60 crate::client::customize::internal::CustomizableSend<
61 crate::operation::create_training_job::CreateTrainingJobOutput,
62 crate::operation::create_training_job::CreateTrainingJobError,
63 > for CreateTrainingJobFluentBuilder
64{
65 fn send(
66 self,
67 config_override: crate::config::Builder,
68 ) -> crate::client::customize::internal::BoxFuture<
69 crate::client::customize::internal::SendResult<
70 crate::operation::create_training_job::CreateTrainingJobOutput,
71 crate::operation::create_training_job::CreateTrainingJobError,
72 >,
73 > {
74 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
75 }
76}
77impl CreateTrainingJobFluentBuilder {
78 /// Creates a new `CreateTrainingJobFluentBuilder`.
79 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
80 Self {
81 handle,
82 inner: ::std::default::Default::default(),
83 config_override: ::std::option::Option::None,
84 }
85 }
86 /// Access the CreateTrainingJob as a reference.
87 pub fn as_input(&self) -> &crate::operation::create_training_job::builders::CreateTrainingJobInputBuilder {
88 &self.inner
89 }
90 /// Sends the request and returns the response.
91 ///
92 /// If an error occurs, an `SdkError` will be returned with additional details that
93 /// can be matched against.
94 ///
95 /// By default, any retryable failures will be retried twice. Retry behavior
96 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
97 /// set when configuring the client.
98 pub async fn send(
99 self,
100 ) -> ::std::result::Result<
101 crate::operation::create_training_job::CreateTrainingJobOutput,
102 ::aws_smithy_runtime_api::client::result::SdkError<
103 crate::operation::create_training_job::CreateTrainingJobError,
104 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
105 >,
106 > {
107 let input = self
108 .inner
109 .build()
110 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
111 let runtime_plugins = crate::operation::create_training_job::CreateTrainingJob::operation_runtime_plugins(
112 self.handle.runtime_plugins.clone(),
113 &self.handle.conf,
114 self.config_override,
115 );
116 crate::operation::create_training_job::CreateTrainingJob::orchestrate(&runtime_plugins, input).await
117 }
118
119 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
120 pub fn customize(
121 self,
122 ) -> crate::client::customize::CustomizableOperation<
123 crate::operation::create_training_job::CreateTrainingJobOutput,
124 crate::operation::create_training_job::CreateTrainingJobError,
125 Self,
126 > {
127 crate::client::customize::CustomizableOperation::new(self)
128 }
129 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
130 self.set_config_override(::std::option::Option::Some(config_override.into()));
131 self
132 }
133
134 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
135 self.config_override = config_override;
136 self
137 }
138 /// <p>The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
139 pub fn training_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
140 self.inner = self.inner.training_job_name(input.into());
141 self
142 }
143 /// <p>The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
144 pub fn set_training_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
145 self.inner = self.inner.set_training_job_name(input);
146 self
147 }
148 /// <p>The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
149 pub fn get_training_job_name(&self) -> &::std::option::Option<::std::string::String> {
150 self.inner.get_training_job_name()
151 }
152 ///
153 /// Adds a key-value pair to `HyperParameters`.
154 ///
155 /// To override the contents of this collection use [`set_hyper_parameters`](Self::set_hyper_parameters).
156 ///
157 /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p>
158 /// <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>.</p><important>
159 /// <p>Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.</p>
160 /// </important>
161 pub fn hyper_parameters(
162 mut self,
163 k: impl ::std::convert::Into<::std::string::String>,
164 v: impl ::std::convert::Into<::std::string::String>,
165 ) -> Self {
166 self.inner = self.inner.hyper_parameters(k.into(), v.into());
167 self
168 }
169 /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p>
170 /// <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>.</p><important>
171 /// <p>Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.</p>
172 /// </important>
173 pub fn set_hyper_parameters(
174 mut self,
175 input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
176 ) -> Self {
177 self.inner = self.inner.set_hyper_parameters(input);
178 self
179 }
180 /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p>
181 /// <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>.</p><important>
182 /// <p>Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.</p>
183 /// </important>
184 pub fn get_hyper_parameters(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
185 self.inner.get_hyper_parameters()
186 }
187 /// <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p>
188 pub fn algorithm_specification(mut self, input: crate::types::AlgorithmSpecification) -> Self {
189 self.inner = self.inner.algorithm_specification(input);
190 self
191 }
192 /// <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p>
193 pub fn set_algorithm_specification(mut self, input: ::std::option::Option<crate::types::AlgorithmSpecification>) -> Self {
194 self.inner = self.inner.set_algorithm_specification(input);
195 self
196 }
197 /// <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p>
198 pub fn get_algorithm_specification(&self) -> &::std::option::Option<crate::types::AlgorithmSpecification> {
199 self.inner.get_algorithm_specification()
200 }
201 /// <p>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.</p>
202 /// <p>During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>.</p><note>
203 /// <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p>
204 /// </note>
205 pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
206 self.inner = self.inner.role_arn(input.into());
207 self
208 }
209 /// <p>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.</p>
210 /// <p>During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>.</p><note>
211 /// <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p>
212 /// </note>
213 pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
214 self.inner = self.inner.set_role_arn(input);
215 self
216 }
217 /// <p>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.</p>
218 /// <p>During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>.</p><note>
219 /// <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p>
220 /// </note>
221 pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
222 self.inner.get_role_arn()
223 }
224 ///
225 /// Appends an item to `InputDataConfig`.
226 ///
227 /// To override the contents of this collection use [`set_input_data_config`](Self::set_input_data_config).
228 ///
229 /// <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location.</p>
230 /// <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.</p>
231 /// <p>Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.</p>
232 /// <p>Your input must be in the same Amazon Web Services region as your training job.</p>
233 pub fn input_data_config(mut self, input: crate::types::Channel) -> Self {
234 self.inner = self.inner.input_data_config(input);
235 self
236 }
237 /// <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location.</p>
238 /// <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.</p>
239 /// <p>Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.</p>
240 /// <p>Your input must be in the same Amazon Web Services region as your training job.</p>
241 pub fn set_input_data_config(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Channel>>) -> Self {
242 self.inner = self.inner.set_input_data_config(input);
243 self
244 }
245 /// <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location.</p>
246 /// <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.</p>
247 /// <p>Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.</p>
248 /// <p>Your input must be in the same Amazon Web Services region as your training job.</p>
249 pub fn get_input_data_config(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Channel>> {
250 self.inner.get_input_data_config()
251 }
252 /// <p>Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.</p>
253 pub fn output_data_config(mut self, input: crate::types::OutputDataConfig) -> Self {
254 self.inner = self.inner.output_data_config(input);
255 self
256 }
257 /// <p>Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.</p>
258 pub fn set_output_data_config(mut self, input: ::std::option::Option<crate::types::OutputDataConfig>) -> Self {
259 self.inner = self.inner.set_output_data_config(input);
260 self
261 }
262 /// <p>Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.</p>
263 pub fn get_output_data_config(&self) -> &::std::option::Option<crate::types::OutputDataConfig> {
264 self.inner.get_output_data_config()
265 }
266 /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training.</p>
267 /// <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
268 pub fn resource_config(mut self, input: crate::types::ResourceConfig) -> Self {
269 self.inner = self.inner.resource_config(input);
270 self
271 }
272 /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training.</p>
273 /// <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
274 pub fn set_resource_config(mut self, input: ::std::option::Option<crate::types::ResourceConfig>) -> Self {
275 self.inner = self.inner.set_resource_config(input);
276 self
277 }
278 /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training.</p>
279 /// <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
280 pub fn get_resource_config(&self) -> &::std::option::Option<crate::types::ResourceConfig> {
281 self.inner.get_resource_config()
282 }
283 /// <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
284 pub fn vpc_config(mut self, input: crate::types::VpcConfig) -> Self {
285 self.inner = self.inner.vpc_config(input);
286 self
287 }
288 /// <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
289 pub fn set_vpc_config(mut self, input: ::std::option::Option<crate::types::VpcConfig>) -> Self {
290 self.inner = self.inner.set_vpc_config(input);
291 self
292 }
293 /// <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
294 pub fn get_vpc_config(&self) -> &::std::option::Option<crate::types::VpcConfig> {
295 self.inner.get_vpc_config()
296 }
297 /// <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p>
298 /// <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.</p>
299 pub fn stopping_condition(mut self, input: crate::types::StoppingCondition) -> Self {
300 self.inner = self.inner.stopping_condition(input);
301 self
302 }
303 /// <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p>
304 /// <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.</p>
305 pub fn set_stopping_condition(mut self, input: ::std::option::Option<crate::types::StoppingCondition>) -> Self {
306 self.inner = self.inner.set_stopping_condition(input);
307 self
308 }
309 /// <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p>
310 /// <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.</p>
311 pub fn get_stopping_condition(&self) -> &::std::option::Option<crate::types::StoppingCondition> {
312 self.inner.get_stopping_condition()
313 }
314 ///
315 /// Appends an item to `Tags`.
316 ///
317 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
318 ///
319 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
320 pub fn tags(mut self, input: crate::types::Tag) -> Self {
321 self.inner = self.inner.tags(input);
322 self
323 }
324 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
325 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
326 self.inner = self.inner.set_tags(input);
327 self
328 }
329 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
330 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
331 self.inner.get_tags()
332 }
333 /// <p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
334 pub fn enable_network_isolation(mut self, input: bool) -> Self {
335 self.inner = self.inner.enable_network_isolation(input);
336 self
337 }
338 /// <p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
339 pub fn set_enable_network_isolation(mut self, input: ::std::option::Option<bool>) -> Self {
340 self.inner = self.inner.set_enable_network_isolation(input);
341 self
342 }
343 /// <p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
344 pub fn get_enable_network_isolation(&self) -> &::std::option::Option<bool> {
345 self.inner.get_enable_network_isolation()
346 }
347 /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
348 pub fn enable_inter_container_traffic_encryption(mut self, input: bool) -> Self {
349 self.inner = self.inner.enable_inter_container_traffic_encryption(input);
350 self
351 }
352 /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
353 pub fn set_enable_inter_container_traffic_encryption(mut self, input: ::std::option::Option<bool>) -> Self {
354 self.inner = self.inner.set_enable_inter_container_traffic_encryption(input);
355 self
356 }
357 /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
358 pub fn get_enable_inter_container_traffic_encryption(&self) -> &::std::option::Option<bool> {
359 self.inner.get_enable_inter_container_traffic_encryption()
360 }
361 /// <p>To train models using managed spot training, choose <code>True</code>. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.</p>
362 /// <p>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.</p>
363 pub fn enable_managed_spot_training(mut self, input: bool) -> Self {
364 self.inner = self.inner.enable_managed_spot_training(input);
365 self
366 }
367 /// <p>To train models using managed spot training, choose <code>True</code>. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.</p>
368 /// <p>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.</p>
369 pub fn set_enable_managed_spot_training(mut self, input: ::std::option::Option<bool>) -> Self {
370 self.inner = self.inner.set_enable_managed_spot_training(input);
371 self
372 }
373 /// <p>To train models using managed spot training, choose <code>True</code>. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.</p>
374 /// <p>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.</p>
375 pub fn get_enable_managed_spot_training(&self) -> &::std::option::Option<bool> {
376 self.inner.get_enable_managed_spot_training()
377 }
378 /// <p>Contains information about the output location for managed spot training checkpoint data.</p>
379 pub fn checkpoint_config(mut self, input: crate::types::CheckpointConfig) -> Self {
380 self.inner = self.inner.checkpoint_config(input);
381 self
382 }
383 /// <p>Contains information about the output location for managed spot training checkpoint data.</p>
384 pub fn set_checkpoint_config(mut self, input: ::std::option::Option<crate::types::CheckpointConfig>) -> Self {
385 self.inner = self.inner.set_checkpoint_config(input);
386 self
387 }
388 /// <p>Contains information about the output location for managed spot training checkpoint data.</p>
389 pub fn get_checkpoint_config(&self) -> &::std::option::Option<crate::types::CheckpointConfig> {
390 self.inner.get_checkpoint_config()
391 }
392 /// <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
393 pub fn debug_hook_config(mut self, input: crate::types::DebugHookConfig) -> Self {
394 self.inner = self.inner.debug_hook_config(input);
395 self
396 }
397 /// <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
398 pub fn set_debug_hook_config(mut self, input: ::std::option::Option<crate::types::DebugHookConfig>) -> Self {
399 self.inner = self.inner.set_debug_hook_config(input);
400 self
401 }
402 /// <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
403 pub fn get_debug_hook_config(&self) -> &::std::option::Option<crate::types::DebugHookConfig> {
404 self.inner.get_debug_hook_config()
405 }
406 ///
407 /// Appends an item to `DebugRuleConfigurations`.
408 ///
409 /// To override the contents of this collection use [`set_debug_rule_configurations`](Self::set_debug_rule_configurations).
410 ///
411 /// <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
412 pub fn debug_rule_configurations(mut self, input: crate::types::DebugRuleConfiguration) -> Self {
413 self.inner = self.inner.debug_rule_configurations(input);
414 self
415 }
416 /// <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
417 pub fn set_debug_rule_configurations(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::DebugRuleConfiguration>>) -> Self {
418 self.inner = self.inner.set_debug_rule_configurations(input);
419 self
420 }
421 /// <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
422 pub fn get_debug_rule_configurations(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::DebugRuleConfiguration>> {
423 self.inner.get_debug_rule_configurations()
424 }
425 /// <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
426 pub fn tensor_board_output_config(mut self, input: crate::types::TensorBoardOutputConfig) -> Self {
427 self.inner = self.inner.tensor_board_output_config(input);
428 self
429 }
430 /// <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
431 pub fn set_tensor_board_output_config(mut self, input: ::std::option::Option<crate::types::TensorBoardOutputConfig>) -> Self {
432 self.inner = self.inner.set_tensor_board_output_config(input);
433 self
434 }
435 /// <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
436 pub fn get_tensor_board_output_config(&self) -> &::std::option::Option<crate::types::TensorBoardOutputConfig> {
437 self.inner.get_tensor_board_output_config()
438 }
439 /// <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p>
440 /// <ul>
441 /// <li>
442 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a></p></li>
443 /// <li>
444 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a></p></li>
445 /// <li>
446 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a></p></li>
447 /// </ul>
448 pub fn experiment_config(mut self, input: crate::types::ExperimentConfig) -> Self {
449 self.inner = self.inner.experiment_config(input);
450 self
451 }
452 /// <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p>
453 /// <ul>
454 /// <li>
455 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a></p></li>
456 /// <li>
457 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a></p></li>
458 /// <li>
459 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a></p></li>
460 /// </ul>
461 pub fn set_experiment_config(mut self, input: ::std::option::Option<crate::types::ExperimentConfig>) -> Self {
462 self.inner = self.inner.set_experiment_config(input);
463 self
464 }
465 /// <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p>
466 /// <ul>
467 /// <li>
468 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a></p></li>
469 /// <li>
470 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a></p></li>
471 /// <li>
472 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a></p></li>
473 /// </ul>
474 pub fn get_experiment_config(&self) -> &::std::option::Option<crate::types::ExperimentConfig> {
475 self.inner.get_experiment_config()
476 }
477 /// <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
478 pub fn profiler_config(mut self, input: crate::types::ProfilerConfig) -> Self {
479 self.inner = self.inner.profiler_config(input);
480 self
481 }
482 /// <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
483 pub fn set_profiler_config(mut self, input: ::std::option::Option<crate::types::ProfilerConfig>) -> Self {
484 self.inner = self.inner.set_profiler_config(input);
485 self
486 }
487 /// <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
488 pub fn get_profiler_config(&self) -> &::std::option::Option<crate::types::ProfilerConfig> {
489 self.inner.get_profiler_config()
490 }
491 ///
492 /// Appends an item to `ProfilerRuleConfigurations`.
493 ///
494 /// To override the contents of this collection use [`set_profiler_rule_configurations`](Self::set_profiler_rule_configurations).
495 ///
496 /// <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
497 pub fn profiler_rule_configurations(mut self, input: crate::types::ProfilerRuleConfiguration) -> Self {
498 self.inner = self.inner.profiler_rule_configurations(input);
499 self
500 }
501 /// <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
502 pub fn set_profiler_rule_configurations(
503 mut self,
504 input: ::std::option::Option<::std::vec::Vec<crate::types::ProfilerRuleConfiguration>>,
505 ) -> Self {
506 self.inner = self.inner.set_profiler_rule_configurations(input);
507 self
508 }
509 /// <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
510 pub fn get_profiler_rule_configurations(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::ProfilerRuleConfiguration>> {
511 self.inner.get_profiler_rule_configurations()
512 }
513 ///
514 /// Adds a key-value pair to `Environment`.
515 ///
516 /// To override the contents of this collection use [`set_environment`](Self::set_environment).
517 ///
518 /// <p>The environment variables to set in the Docker container.</p>
519 pub fn environment(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
520 self.inner = self.inner.environment(k.into(), v.into());
521 self
522 }
523 /// <p>The environment variables to set in the Docker container.</p>
524 pub fn set_environment(
525 mut self,
526 input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
527 ) -> Self {
528 self.inner = self.inner.set_environment(input);
529 self
530 }
531 /// <p>The environment variables to set in the Docker container.</p>
532 pub fn get_environment(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
533 self.inner.get_environment()
534 }
535 /// <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
536 pub fn retry_strategy(mut self, input: crate::types::RetryStrategy) -> Self {
537 self.inner = self.inner.retry_strategy(input);
538 self
539 }
540 /// <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
541 pub fn set_retry_strategy(mut self, input: ::std::option::Option<crate::types::RetryStrategy>) -> Self {
542 self.inner = self.inner.set_retry_strategy(input);
543 self
544 }
545 /// <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
546 pub fn get_retry_strategy(&self) -> &::std::option::Option<crate::types::RetryStrategy> {
547 self.inner.get_retry_strategy()
548 }
549 /// <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
550 pub fn remote_debug_config(mut self, input: crate::types::RemoteDebugConfig) -> Self {
551 self.inner = self.inner.remote_debug_config(input);
552 self
553 }
554 /// <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
555 pub fn set_remote_debug_config(mut self, input: ::std::option::Option<crate::types::RemoteDebugConfig>) -> Self {
556 self.inner = self.inner.set_remote_debug_config(input);
557 self
558 }
559 /// <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
560 pub fn get_remote_debug_config(&self) -> &::std::option::Option<crate::types::RemoteDebugConfig> {
561 self.inner.get_remote_debug_config()
562 }
563 /// <p>Contains information about the infrastructure health check configuration for the training job.</p>
564 pub fn infra_check_config(mut self, input: crate::types::InfraCheckConfig) -> Self {
565 self.inner = self.inner.infra_check_config(input);
566 self
567 }
568 /// <p>Contains information about the infrastructure health check configuration for the training job.</p>
569 pub fn set_infra_check_config(mut self, input: ::std::option::Option<crate::types::InfraCheckConfig>) -> Self {
570 self.inner = self.inner.set_infra_check_config(input);
571 self
572 }
573 /// <p>Contains information about the infrastructure health check configuration for the training job.</p>
574 pub fn get_infra_check_config(&self) -> &::std::option::Option<crate::types::InfraCheckConfig> {
575 self.inner.get_infra_check_config()
576 }
577 /// <p>Contains information about attribute-based access control (ABAC) for the training job.</p>
578 pub fn session_chaining_config(mut self, input: crate::types::SessionChainingConfig) -> Self {
579 self.inner = self.inner.session_chaining_config(input);
580 self
581 }
582 /// <p>Contains information about attribute-based access control (ABAC) for the training job.</p>
583 pub fn set_session_chaining_config(mut self, input: ::std::option::Option<crate::types::SessionChainingConfig>) -> Self {
584 self.inner = self.inner.set_session_chaining_config(input);
585 self
586 }
587 /// <p>Contains information about attribute-based access control (ABAC) for the training job.</p>
588 pub fn get_session_chaining_config(&self) -> &::std::option::Option<crate::types::SessionChainingConfig> {
589 self.inner.get_session_chaining_config()
590 }
591}