aws_sdk_sagemaker/operation/create_labeling_job/
builders.rs

1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_labeling_job::_create_labeling_job_output::CreateLabelingJobOutputBuilder;
3
4pub use crate::operation::create_labeling_job::_create_labeling_job_input::CreateLabelingJobInputBuilder;
5
6impl crate::operation::create_labeling_job::builders::CreateLabelingJobInputBuilder {
7    /// Sends a request with this input using the given client.
8    pub async fn send_with(
9        self,
10        client: &crate::Client,
11    ) -> ::std::result::Result<
12        crate::operation::create_labeling_job::CreateLabelingJobOutput,
13        ::aws_smithy_runtime_api::client::result::SdkError<
14            crate::operation::create_labeling_job::CreateLabelingJobError,
15            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16        >,
17    > {
18        let mut fluent_builder = client.create_labeling_job();
19        fluent_builder.inner = self;
20        fluent_builder.send().await
21    }
22}
23/// Fluent builder constructing a request to `CreateLabelingJob`.
24///
25/// <p>Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.</p>
26/// <p>You can select your workforce from one of three providers:</p>
27/// <ul>
28/// <li>
29/// <p>A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.</p></li>
30/// <li>
31/// <p>One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide expertise in specific areas.</p></li>
32/// <li>
33/// <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.</p></li>
34/// </ul>
35/// <p>You can also use <i>automated data labeling</i> to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses <i>active learning</i> to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html">Using Automated Data Labeling</a>.</p>
36/// <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a <i>manifest file</i> that describes the location of each object. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html">Using Input and Output Data</a>.</p>
37/// <p>The output can be used as the manifest file for another labeling job or as training data for your machine learning models.</p>
38/// <p>You can use this operation to create a static labeling job or a streaming labeling job. A static labeling job stops if all data objects in the input manifest file identified in <code>ManifestS3Uri</code> have been labeled. A streaming labeling job runs perpetually until it is manually stopped, or remains idle for 10 days. You can send new data objects to an active (<code>InProgress</code>) streaming labeling job in real time. To learn how to create a static labeling job, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job-api.html">Create a Labeling Job (API) </a> in the Amazon SageMaker Developer Guide. To learn how to create a streaming labeling job, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-create-job.html">Create a Streaming Labeling Job</a>.</p>
39#[derive(::std::clone::Clone, ::std::fmt::Debug)]
40pub struct CreateLabelingJobFluentBuilder {
41    handle: ::std::sync::Arc<crate::client::Handle>,
42    inner: crate::operation::create_labeling_job::builders::CreateLabelingJobInputBuilder,
43    config_override: ::std::option::Option<crate::config::Builder>,
44}
45impl
46    crate::client::customize::internal::CustomizableSend<
47        crate::operation::create_labeling_job::CreateLabelingJobOutput,
48        crate::operation::create_labeling_job::CreateLabelingJobError,
49    > for CreateLabelingJobFluentBuilder
50{
51    fn send(
52        self,
53        config_override: crate::config::Builder,
54    ) -> crate::client::customize::internal::BoxFuture<
55        crate::client::customize::internal::SendResult<
56            crate::operation::create_labeling_job::CreateLabelingJobOutput,
57            crate::operation::create_labeling_job::CreateLabelingJobError,
58        >,
59    > {
60        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
61    }
62}
63impl CreateLabelingJobFluentBuilder {
64    /// Creates a new `CreateLabelingJobFluentBuilder`.
65    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
66        Self {
67            handle,
68            inner: ::std::default::Default::default(),
69            config_override: ::std::option::Option::None,
70        }
71    }
72    /// Access the CreateLabelingJob as a reference.
73    pub fn as_input(&self) -> &crate::operation::create_labeling_job::builders::CreateLabelingJobInputBuilder {
74        &self.inner
75    }
76    /// Sends the request and returns the response.
77    ///
78    /// If an error occurs, an `SdkError` will be returned with additional details that
79    /// can be matched against.
80    ///
81    /// By default, any retryable failures will be retried twice. Retry behavior
82    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
83    /// set when configuring the client.
84    pub async fn send(
85        self,
86    ) -> ::std::result::Result<
87        crate::operation::create_labeling_job::CreateLabelingJobOutput,
88        ::aws_smithy_runtime_api::client::result::SdkError<
89            crate::operation::create_labeling_job::CreateLabelingJobError,
90            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
91        >,
92    > {
93        let input = self
94            .inner
95            .build()
96            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
97        let runtime_plugins = crate::operation::create_labeling_job::CreateLabelingJob::operation_runtime_plugins(
98            self.handle.runtime_plugins.clone(),
99            &self.handle.conf,
100            self.config_override,
101        );
102        crate::operation::create_labeling_job::CreateLabelingJob::orchestrate(&runtime_plugins, input).await
103    }
104
105    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
106    pub fn customize(
107        self,
108    ) -> crate::client::customize::CustomizableOperation<
109        crate::operation::create_labeling_job::CreateLabelingJobOutput,
110        crate::operation::create_labeling_job::CreateLabelingJobError,
111        Self,
112    > {
113        crate::client::customize::CustomizableOperation::new(self)
114    }
115    pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
116        self.set_config_override(::std::option::Option::Some(config_override.into()));
117        self
118    }
119
120    pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
121        self.config_override = config_override;
122        self
123    }
124    /// <p>The name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region. <code>LabelingJobName</code> is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.</p>
125    pub fn labeling_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
126        self.inner = self.inner.labeling_job_name(input.into());
127        self
128    }
129    /// <p>The name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region. <code>LabelingJobName</code> is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.</p>
130    pub fn set_labeling_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
131        self.inner = self.inner.set_labeling_job_name(input);
132        self
133    }
134    /// <p>The name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region. <code>LabelingJobName</code> is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.</p>
135    pub fn get_labeling_job_name(&self) -> &::std::option::Option<::std::string::String> {
136        self.inner.get_labeling_job_name()
137    }
138    /// <p>The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The <code>LabelAttributeName</code> must meet the following requirements.</p>
139    /// <ul>
140    /// <li>
141    /// <p>The name can't end with "-metadata".</p></li>
142    /// <li>
143    /// <p>If you are using one of the following <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html">built-in task types</a>, the attribute name <i>must</i> end with "-ref". If the task type you are using is not listed below, the attribute name <i>must not</i> end with "-ref".</p>
144    /// <ul>
145    /// <li>
146    /// <p>Image semantic segmentation (<code>SemanticSegmentation)</code>, and adjustment (<code>AdjustmentSemanticSegmentation</code>) and verification (<code>VerificationSemanticSegmentation</code>) labeling jobs for this task type.</p></li>
147    /// <li>
148    /// <p>Video frame object detection (<code>VideoObjectDetection</code>), and adjustment and verification (<code>AdjustmentVideoObjectDetection</code>) labeling jobs for this task type.</p></li>
149    /// <li>
150    /// <p>Video frame object tracking (<code>VideoObjectTracking</code>), and adjustment and verification (<code>AdjustmentVideoObjectTracking</code>) labeling jobs for this task type.</p></li>
151    /// <li>
152    /// <p>3D point cloud semantic segmentation (<code>3DPointCloudSemanticSegmentation</code>), and adjustment and verification (<code>Adjustment3DPointCloudSemanticSegmentation</code>) labeling jobs for this task type.</p></li>
153    /// <li>
154    /// <p>3D point cloud object tracking (<code>3DPointCloudObjectTracking</code>), and adjustment and verification (<code>Adjustment3DPointCloudObjectTracking</code>) labeling jobs for this task type.</p></li>
155    /// </ul></li>
156    /// </ul>
157    /// <p></p><important>
158    /// <p>If you are creating an adjustment or verification labeling job, you must use a <i>different</i> <code>LabelAttributeName</code> than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html">Verify and Adjust Labels</a>.</p>
159    /// </important>
160    pub fn label_attribute_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
161        self.inner = self.inner.label_attribute_name(input.into());
162        self
163    }
164    /// <p>The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The <code>LabelAttributeName</code> must meet the following requirements.</p>
165    /// <ul>
166    /// <li>
167    /// <p>The name can't end with "-metadata".</p></li>
168    /// <li>
169    /// <p>If you are using one of the following <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html">built-in task types</a>, the attribute name <i>must</i> end with "-ref". If the task type you are using is not listed below, the attribute name <i>must not</i> end with "-ref".</p>
170    /// <ul>
171    /// <li>
172    /// <p>Image semantic segmentation (<code>SemanticSegmentation)</code>, and adjustment (<code>AdjustmentSemanticSegmentation</code>) and verification (<code>VerificationSemanticSegmentation</code>) labeling jobs for this task type.</p></li>
173    /// <li>
174    /// <p>Video frame object detection (<code>VideoObjectDetection</code>), and adjustment and verification (<code>AdjustmentVideoObjectDetection</code>) labeling jobs for this task type.</p></li>
175    /// <li>
176    /// <p>Video frame object tracking (<code>VideoObjectTracking</code>), and adjustment and verification (<code>AdjustmentVideoObjectTracking</code>) labeling jobs for this task type.</p></li>
177    /// <li>
178    /// <p>3D point cloud semantic segmentation (<code>3DPointCloudSemanticSegmentation</code>), and adjustment and verification (<code>Adjustment3DPointCloudSemanticSegmentation</code>) labeling jobs for this task type.</p></li>
179    /// <li>
180    /// <p>3D point cloud object tracking (<code>3DPointCloudObjectTracking</code>), and adjustment and verification (<code>Adjustment3DPointCloudObjectTracking</code>) labeling jobs for this task type.</p></li>
181    /// </ul></li>
182    /// </ul>
183    /// <p></p><important>
184    /// <p>If you are creating an adjustment or verification labeling job, you must use a <i>different</i> <code>LabelAttributeName</code> than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html">Verify and Adjust Labels</a>.</p>
185    /// </important>
186    pub fn set_label_attribute_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
187        self.inner = self.inner.set_label_attribute_name(input);
188        self
189    }
190    /// <p>The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The <code>LabelAttributeName</code> must meet the following requirements.</p>
191    /// <ul>
192    /// <li>
193    /// <p>The name can't end with "-metadata".</p></li>
194    /// <li>
195    /// <p>If you are using one of the following <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html">built-in task types</a>, the attribute name <i>must</i> end with "-ref". If the task type you are using is not listed below, the attribute name <i>must not</i> end with "-ref".</p>
196    /// <ul>
197    /// <li>
198    /// <p>Image semantic segmentation (<code>SemanticSegmentation)</code>, and adjustment (<code>AdjustmentSemanticSegmentation</code>) and verification (<code>VerificationSemanticSegmentation</code>) labeling jobs for this task type.</p></li>
199    /// <li>
200    /// <p>Video frame object detection (<code>VideoObjectDetection</code>), and adjustment and verification (<code>AdjustmentVideoObjectDetection</code>) labeling jobs for this task type.</p></li>
201    /// <li>
202    /// <p>Video frame object tracking (<code>VideoObjectTracking</code>), and adjustment and verification (<code>AdjustmentVideoObjectTracking</code>) labeling jobs for this task type.</p></li>
203    /// <li>
204    /// <p>3D point cloud semantic segmentation (<code>3DPointCloudSemanticSegmentation</code>), and adjustment and verification (<code>Adjustment3DPointCloudSemanticSegmentation</code>) labeling jobs for this task type.</p></li>
205    /// <li>
206    /// <p>3D point cloud object tracking (<code>3DPointCloudObjectTracking</code>), and adjustment and verification (<code>Adjustment3DPointCloudObjectTracking</code>) labeling jobs for this task type.</p></li>
207    /// </ul></li>
208    /// </ul>
209    /// <p></p><important>
210    /// <p>If you are creating an adjustment or verification labeling job, you must use a <i>different</i> <code>LabelAttributeName</code> than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html">Verify and Adjust Labels</a>.</p>
211    /// </important>
212    pub fn get_label_attribute_name(&self) -> &::std::option::Option<::std::string::String> {
213        self.inner.get_label_attribute_name()
214    }
215    /// <p>Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.</p>
216    /// <p>You must specify at least one of the following: <code>S3DataSource</code> or <code>SnsDataSource</code>.</p>
217    /// <ul>
218    /// <li>
219    /// <p>Use <code>SnsDataSource</code> to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled.</p></li>
220    /// <li>
221    /// <p>Use <code>S3DataSource</code> to specify an input manifest file for both streaming and one-time labeling jobs. Adding an <code>S3DataSource</code> is optional if you use <code>SnsDataSource</code> to create a streaming labeling job.</p></li>
222    /// </ul>
223    /// <p>If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use <code>ContentClassifiers</code> to specify that your data is free of personally identifiable information and adult content.</p>
224    pub fn input_config(mut self, input: crate::types::LabelingJobInputConfig) -> Self {
225        self.inner = self.inner.input_config(input);
226        self
227    }
228    /// <p>Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.</p>
229    /// <p>You must specify at least one of the following: <code>S3DataSource</code> or <code>SnsDataSource</code>.</p>
230    /// <ul>
231    /// <li>
232    /// <p>Use <code>SnsDataSource</code> to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled.</p></li>
233    /// <li>
234    /// <p>Use <code>S3DataSource</code> to specify an input manifest file for both streaming and one-time labeling jobs. Adding an <code>S3DataSource</code> is optional if you use <code>SnsDataSource</code> to create a streaming labeling job.</p></li>
235    /// </ul>
236    /// <p>If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use <code>ContentClassifiers</code> to specify that your data is free of personally identifiable information and adult content.</p>
237    pub fn set_input_config(mut self, input: ::std::option::Option<crate::types::LabelingJobInputConfig>) -> Self {
238        self.inner = self.inner.set_input_config(input);
239        self
240    }
241    /// <p>Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.</p>
242    /// <p>You must specify at least one of the following: <code>S3DataSource</code> or <code>SnsDataSource</code>.</p>
243    /// <ul>
244    /// <li>
245    /// <p>Use <code>SnsDataSource</code> to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled.</p></li>
246    /// <li>
247    /// <p>Use <code>S3DataSource</code> to specify an input manifest file for both streaming and one-time labeling jobs. Adding an <code>S3DataSource</code> is optional if you use <code>SnsDataSource</code> to create a streaming labeling job.</p></li>
248    /// </ul>
249    /// <p>If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use <code>ContentClassifiers</code> to specify that your data is free of personally identifiable information and adult content.</p>
250    pub fn get_input_config(&self) -> &::std::option::Option<crate::types::LabelingJobInputConfig> {
251        self.inner.get_input_config()
252    }
253    /// <p>The location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.</p>
254    pub fn output_config(mut self, input: crate::types::LabelingJobOutputConfig) -> Self {
255        self.inner = self.inner.output_config(input);
256        self
257    }
258    /// <p>The location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.</p>
259    pub fn set_output_config(mut self, input: ::std::option::Option<crate::types::LabelingJobOutputConfig>) -> Self {
260        self.inner = self.inner.set_output_config(input);
261        self
262    }
263    /// <p>The location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.</p>
264    pub fn get_output_config(&self) -> &::std::option::Option<crate::types::LabelingJobOutputConfig> {
265        self.inner.get_output_config()
266    }
267    /// <p>The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.</p>
268    pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
269        self.inner = self.inner.role_arn(input.into());
270        self
271    }
272    /// <p>The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.</p>
273    pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
274        self.inner = self.inner.set_role_arn(input);
275        self
276    }
277    /// <p>The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.</p>
278    pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
279        self.inner.get_role_arn()
280    }
281    /// <p>The S3 URI of the file, referred to as a <i>label category configuration file</i>, that defines the categories used to label the data objects.</p>
282    /// <p>For 3D point cloud and video frame task types, you can add label category attributes and frame attributes to your label category configuration file. To learn how, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html">Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs</a>.</p>
283    /// <p>For named entity recognition jobs, in addition to <code>"labels"</code>, you must provide worker instructions in the label category configuration file using the <code>"instructions"</code> parameter: <code>"instructions": {"shortInstruction":"</code></p>
284    /// <h1><code>Add header</code></h1>
285    /// <p><code>Add Instructions</code></p><code>", "fullInstruction":"
286    /// <p>Add additional instructions.</p>"}</code>. For details and an example, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-named-entity-recg.html#sms-creating-ner-api">Create a Named Entity Recognition Labeling Job (API) </a>.
287    /// <p></p>
288    /// <p>For all other <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html">built-in task types</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html">custom tasks</a>, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing <code>label_1</code>, <code>label_2</code>,<code>...</code>,<code>label_n</code> with your label categories.</p>
289    /// <p><code>{ </code></p>
290    /// <p><code>"document-version": "2018-11-28",</code></p>
291    /// <p><code>"labels": \[{"label": "label_1"},{"label": "label_2"},...{"label": "label_n"}\]</code></p>
292    /// <p><code>}</code></p>
293    /// <p>Note the following about the label category configuration file:</p>
294    /// <ul>
295    /// <li>
296    /// <p>For image classification and text classification (single and multi-label) you must specify at least two label categories. For all other task types, the minimum number of label categories required is one.</p></li>
297    /// <li>
298    /// <p>Each label category must be unique, you cannot specify duplicate label categories.</p></li>
299    /// <li>
300    /// <p>If you create a 3D point cloud or video frame adjustment or verification labeling job, you must include <code>auditLabelAttributeName</code> in the label category configuration. Use this parameter to enter the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName"> <code>LabelAttributeName</code> </a> of the labeling job you want to adjust or verify annotations of.</p></li>
301    /// </ul>
302    pub fn label_category_config_s3_uri(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
303        self.inner = self.inner.label_category_config_s3_uri(input.into());
304        self
305    }
306    /// <p>The S3 URI of the file, referred to as a <i>label category configuration file</i>, that defines the categories used to label the data objects.</p>
307    /// <p>For 3D point cloud and video frame task types, you can add label category attributes and frame attributes to your label category configuration file. To learn how, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html">Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs</a>.</p>
308    /// <p>For named entity recognition jobs, in addition to <code>"labels"</code>, you must provide worker instructions in the label category configuration file using the <code>"instructions"</code> parameter: <code>"instructions": {"shortInstruction":"</code></p>
309    /// <h1><code>Add header</code></h1>
310    /// <p><code>Add Instructions</code></p><code>", "fullInstruction":"
311    /// <p>Add additional instructions.</p>"}</code>. For details and an example, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-named-entity-recg.html#sms-creating-ner-api">Create a Named Entity Recognition Labeling Job (API) </a>.
312    /// <p></p>
313    /// <p>For all other <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html">built-in task types</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html">custom tasks</a>, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing <code>label_1</code>, <code>label_2</code>,<code>...</code>,<code>label_n</code> with your label categories.</p>
314    /// <p><code>{ </code></p>
315    /// <p><code>"document-version": "2018-11-28",</code></p>
316    /// <p><code>"labels": \[{"label": "label_1"},{"label": "label_2"},...{"label": "label_n"}\]</code></p>
317    /// <p><code>}</code></p>
318    /// <p>Note the following about the label category configuration file:</p>
319    /// <ul>
320    /// <li>
321    /// <p>For image classification and text classification (single and multi-label) you must specify at least two label categories. For all other task types, the minimum number of label categories required is one.</p></li>
322    /// <li>
323    /// <p>Each label category must be unique, you cannot specify duplicate label categories.</p></li>
324    /// <li>
325    /// <p>If you create a 3D point cloud or video frame adjustment or verification labeling job, you must include <code>auditLabelAttributeName</code> in the label category configuration. Use this parameter to enter the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName"> <code>LabelAttributeName</code> </a> of the labeling job you want to adjust or verify annotations of.</p></li>
326    /// </ul>
327    pub fn set_label_category_config_s3_uri(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
328        self.inner = self.inner.set_label_category_config_s3_uri(input);
329        self
330    }
331    /// <p>The S3 URI of the file, referred to as a <i>label category configuration file</i>, that defines the categories used to label the data objects.</p>
332    /// <p>For 3D point cloud and video frame task types, you can add label category attributes and frame attributes to your label category configuration file. To learn how, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html">Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs</a>.</p>
333    /// <p>For named entity recognition jobs, in addition to <code>"labels"</code>, you must provide worker instructions in the label category configuration file using the <code>"instructions"</code> parameter: <code>"instructions": {"shortInstruction":"</code></p>
334    /// <h1><code>Add header</code></h1>
335    /// <p><code>Add Instructions</code></p><code>", "fullInstruction":"
336    /// <p>Add additional instructions.</p>"}</code>. For details and an example, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-named-entity-recg.html#sms-creating-ner-api">Create a Named Entity Recognition Labeling Job (API) </a>.
337    /// <p></p>
338    /// <p>For all other <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html">built-in task types</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html">custom tasks</a>, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing <code>label_1</code>, <code>label_2</code>,<code>...</code>,<code>label_n</code> with your label categories.</p>
339    /// <p><code>{ </code></p>
340    /// <p><code>"document-version": "2018-11-28",</code></p>
341    /// <p><code>"labels": \[{"label": "label_1"},{"label": "label_2"},...{"label": "label_n"}\]</code></p>
342    /// <p><code>}</code></p>
343    /// <p>Note the following about the label category configuration file:</p>
344    /// <ul>
345    /// <li>
346    /// <p>For image classification and text classification (single and multi-label) you must specify at least two label categories. For all other task types, the minimum number of label categories required is one.</p></li>
347    /// <li>
348    /// <p>Each label category must be unique, you cannot specify duplicate label categories.</p></li>
349    /// <li>
350    /// <p>If you create a 3D point cloud or video frame adjustment or verification labeling job, you must include <code>auditLabelAttributeName</code> in the label category configuration. Use this parameter to enter the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName"> <code>LabelAttributeName</code> </a> of the labeling job you want to adjust or verify annotations of.</p></li>
351    /// </ul>
352    pub fn get_label_category_config_s3_uri(&self) -> &::std::option::Option<::std::string::String> {
353        self.inner.get_label_category_config_s3_uri()
354    }
355    /// <p>A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.</p>
356    pub fn stopping_conditions(mut self, input: crate::types::LabelingJobStoppingConditions) -> Self {
357        self.inner = self.inner.stopping_conditions(input);
358        self
359    }
360    /// <p>A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.</p>
361    pub fn set_stopping_conditions(mut self, input: ::std::option::Option<crate::types::LabelingJobStoppingConditions>) -> Self {
362        self.inner = self.inner.set_stopping_conditions(input);
363        self
364    }
365    /// <p>A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.</p>
366    pub fn get_stopping_conditions(&self) -> &::std::option::Option<crate::types::LabelingJobStoppingConditions> {
367        self.inner.get_stopping_conditions()
368    }
369    /// <p>Configures the information required to perform automated data labeling.</p>
370    pub fn labeling_job_algorithms_config(mut self, input: crate::types::LabelingJobAlgorithmsConfig) -> Self {
371        self.inner = self.inner.labeling_job_algorithms_config(input);
372        self
373    }
374    /// <p>Configures the information required to perform automated data labeling.</p>
375    pub fn set_labeling_job_algorithms_config(mut self, input: ::std::option::Option<crate::types::LabelingJobAlgorithmsConfig>) -> Self {
376        self.inner = self.inner.set_labeling_job_algorithms_config(input);
377        self
378    }
379    /// <p>Configures the information required to perform automated data labeling.</p>
380    pub fn get_labeling_job_algorithms_config(&self) -> &::std::option::Option<crate::types::LabelingJobAlgorithmsConfig> {
381        self.inner.get_labeling_job_algorithms_config()
382    }
383    /// <p>Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).</p>
384    pub fn human_task_config(mut self, input: crate::types::HumanTaskConfig) -> Self {
385        self.inner = self.inner.human_task_config(input);
386        self
387    }
388    /// <p>Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).</p>
389    pub fn set_human_task_config(mut self, input: ::std::option::Option<crate::types::HumanTaskConfig>) -> Self {
390        self.inner = self.inner.set_human_task_config(input);
391        self
392    }
393    /// <p>Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).</p>
394    pub fn get_human_task_config(&self) -> &::std::option::Option<crate::types::HumanTaskConfig> {
395        self.inner.get_human_task_config()
396    }
397    ///
398    /// Appends an item to `Tags`.
399    ///
400    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
401    ///
402    /// <p>An array of key/value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost Management User Guide</i>.</p>
403    pub fn tags(mut self, input: crate::types::Tag) -> Self {
404        self.inner = self.inner.tags(input);
405        self
406    }
407    /// <p>An array of key/value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost Management User Guide</i>.</p>
408    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
409        self.inner = self.inner.set_tags(input);
410        self
411    }
412    /// <p>An array of key/value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost Management User Guide</i>.</p>
413    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
414        self.inner.get_tags()
415    }
416}