aws_sdk_sagemaker/operation/create_auto_ml_job_v2/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_auto_ml_job_v2::_create_auto_ml_job_v2_output::CreateAutoMlJobV2OutputBuilder;
3
4pub use crate::operation::create_auto_ml_job_v2::_create_auto_ml_job_v2_input::CreateAutoMlJobV2InputBuilder;
5
6impl crate::operation::create_auto_ml_job_v2::builders::CreateAutoMlJobV2InputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_auto_ml_job_v2();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreateAutoMLJobV2`.
24///
25/// <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.</p>
26/// <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.</p>
27/// <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a> in the SageMaker AI developer guide.</p>
28/// <p>AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation.</p><note>
29/// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> are new versions of <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html">CreateAutoMLJob</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a> which offer backward compatibility.</p>
30/// <p><code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p>
31/// <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p>
32/// </note>
33/// <p>For the list of available problem types supported by <code>CreateAutoMLJobV2</code>, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html">AutoMLProblemTypeConfig</a>.</p>
34/// <p>You can find the best-performing model after you run an AutoML job V2 by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>.</p>
35#[derive(::std::clone::Clone, ::std::fmt::Debug)]
36pub struct CreateAutoMLJobV2FluentBuilder {
37 handle: ::std::sync::Arc<crate::client::Handle>,
38 inner: crate::operation::create_auto_ml_job_v2::builders::CreateAutoMlJobV2InputBuilder,
39 config_override: ::std::option::Option<crate::config::Builder>,
40}
41impl
42 crate::client::customize::internal::CustomizableSend<
43 crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
44 crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
45 > for CreateAutoMLJobV2FluentBuilder
46{
47 fn send(
48 self,
49 config_override: crate::config::Builder,
50 ) -> crate::client::customize::internal::BoxFuture<
51 crate::client::customize::internal::SendResult<
52 crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
53 crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
54 >,
55 > {
56 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
57 }
58}
59impl CreateAutoMLJobV2FluentBuilder {
60 /// Creates a new `CreateAutoMLJobV2FluentBuilder`.
61 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
62 Self {
63 handle,
64 inner: ::std::default::Default::default(),
65 config_override: ::std::option::Option::None,
66 }
67 }
68 /// Access the CreateAutoMLJobV2 as a reference.
69 pub fn as_input(&self) -> &crate::operation::create_auto_ml_job_v2::builders::CreateAutoMlJobV2InputBuilder {
70 &self.inner
71 }
72 /// Sends the request and returns the response.
73 ///
74 /// If an error occurs, an `SdkError` will be returned with additional details that
75 /// can be matched against.
76 ///
77 /// By default, any retryable failures will be retried twice. Retry behavior
78 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
79 /// set when configuring the client.
80 pub async fn send(
81 self,
82 ) -> ::std::result::Result<
83 crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
84 ::aws_smithy_runtime_api::client::result::SdkError<
85 crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
86 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
87 >,
88 > {
89 let input = self
90 .inner
91 .build()
92 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
93 let runtime_plugins = crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2::operation_runtime_plugins(
94 self.handle.runtime_plugins.clone(),
95 &self.handle.conf,
96 self.config_override,
97 );
98 crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2::orchestrate(&runtime_plugins, input).await
99 }
100
101 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
102 pub fn customize(
103 self,
104 ) -> crate::client::customize::CustomizableOperation<
105 crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
106 crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
107 Self,
108 > {
109 crate::client::customize::CustomizableOperation::new(self)
110 }
111 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
112 self.set_config_override(::std::option::Option::Some(config_override.into()));
113 self
114 }
115
116 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
117 self.config_override = config_override;
118 self
119 }
120 /// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
121 pub fn auto_ml_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
122 self.inner = self.inner.auto_ml_job_name(input.into());
123 self
124 }
125 /// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
126 pub fn set_auto_ml_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
127 self.inner = self.inner.set_auto_ml_job_name(input);
128 self
129 }
130 /// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
131 pub fn get_auto_ml_job_name(&self) -> &::std::option::Option<::std::string::String> {
132 self.inner.get_auto_ml_job_name()
133 }
134 ///
135 /// Appends an item to `AutoMLJobInputDataConfig`.
136 ///
137 /// To override the contents of this collection use [`set_auto_ml_job_input_data_config`](Self::set_auto_ml_job_input_data_config).
138 ///
139 /// <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p>
140 /// <ul>
141 /// <li>
142 /// <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p></li>
143 /// <li>
144 /// <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p></li>
145 /// <li>
146 /// <p>For text classification: <code>S3Prefix</code>.</p></li>
147 /// <li>
148 /// <p>For time-series forecasting: <code>S3Prefix</code>.</p></li>
149 /// <li>
150 /// <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p></li>
151 /// </ul>
152 pub fn auto_ml_job_input_data_config(mut self, input: crate::types::AutoMlJobChannel) -> Self {
153 self.inner = self.inner.auto_ml_job_input_data_config(input);
154 self
155 }
156 /// <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p>
157 /// <ul>
158 /// <li>
159 /// <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p></li>
160 /// <li>
161 /// <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p></li>
162 /// <li>
163 /// <p>For text classification: <code>S3Prefix</code>.</p></li>
164 /// <li>
165 /// <p>For time-series forecasting: <code>S3Prefix</code>.</p></li>
166 /// <li>
167 /// <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p></li>
168 /// </ul>
169 pub fn set_auto_ml_job_input_data_config(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::AutoMlJobChannel>>) -> Self {
170 self.inner = self.inner.set_auto_ml_job_input_data_config(input);
171 self
172 }
173 /// <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p>
174 /// <ul>
175 /// <li>
176 /// <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p></li>
177 /// <li>
178 /// <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p></li>
179 /// <li>
180 /// <p>For text classification: <code>S3Prefix</code>.</p></li>
181 /// <li>
182 /// <p>For time-series forecasting: <code>S3Prefix</code>.</p></li>
183 /// <li>
184 /// <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p></li>
185 /// </ul>
186 pub fn get_auto_ml_job_input_data_config(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::AutoMlJobChannel>> {
187 self.inner.get_auto_ml_job_input_data_config()
188 }
189 /// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
190 pub fn output_data_config(mut self, input: crate::types::AutoMlOutputDataConfig) -> Self {
191 self.inner = self.inner.output_data_config(input);
192 self
193 }
194 /// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
195 pub fn set_output_data_config(mut self, input: ::std::option::Option<crate::types::AutoMlOutputDataConfig>) -> Self {
196 self.inner = self.inner.set_output_data_config(input);
197 self
198 }
199 /// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
200 pub fn get_output_data_config(&self) -> &::std::option::Option<crate::types::AutoMlOutputDataConfig> {
201 self.inner.get_output_data_config()
202 }
203 /// <p>Defines the configuration settings of one of the supported problem types.</p>
204 pub fn auto_ml_problem_type_config(mut self, input: crate::types::AutoMlProblemTypeConfig) -> Self {
205 self.inner = self.inner.auto_ml_problem_type_config(input);
206 self
207 }
208 /// <p>Defines the configuration settings of one of the supported problem types.</p>
209 pub fn set_auto_ml_problem_type_config(mut self, input: ::std::option::Option<crate::types::AutoMlProblemTypeConfig>) -> Self {
210 self.inner = self.inner.set_auto_ml_problem_type_config(input);
211 self
212 }
213 /// <p>Defines the configuration settings of one of the supported problem types.</p>
214 pub fn get_auto_ml_problem_type_config(&self) -> &::std::option::Option<crate::types::AutoMlProblemTypeConfig> {
215 self.inner.get_auto_ml_problem_type_config()
216 }
217 /// <p>The ARN of the role that is used to access the data.</p>
218 pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
219 self.inner = self.inner.role_arn(input.into());
220 self
221 }
222 /// <p>The ARN of the role that is used to access the data.</p>
223 pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
224 self.inner = self.inner.set_role_arn(input);
225 self
226 }
227 /// <p>The ARN of the role that is used to access the data.</p>
228 pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
229 self.inner.get_role_arn()
230 }
231 ///
232 /// Appends an item to `Tags`.
233 ///
234 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
235 ///
236 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
237 pub fn tags(mut self, input: crate::types::Tag) -> Self {
238 self.inner = self.inner.tags(input);
239 self
240 }
241 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
242 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
243 self.inner = self.inner.set_tags(input);
244 self
245 }
246 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
247 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
248 self.inner.get_tags()
249 }
250 /// <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
251 pub fn security_config(mut self, input: crate::types::AutoMlSecurityConfig) -> Self {
252 self.inner = self.inner.security_config(input);
253 self
254 }
255 /// <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
256 pub fn set_security_config(mut self, input: ::std::option::Option<crate::types::AutoMlSecurityConfig>) -> Self {
257 self.inner = self.inner.set_security_config(input);
258 self
259 }
260 /// <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
261 pub fn get_security_config(&self) -> &::std::option::Option<crate::types::AutoMlSecurityConfig> {
262 self.inner.get_security_config()
263 }
264 /// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p><note>
265 /// <ul>
266 /// <li>
267 /// <p>For tabular problem types: You must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p></li>
268 /// <li>
269 /// <p>For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for fine-tuning LLMs in Autopilot</a>.</p></li>
270 /// </ul>
271 /// </note>
272 pub fn auto_ml_job_objective(mut self, input: crate::types::AutoMlJobObjective) -> Self {
273 self.inner = self.inner.auto_ml_job_objective(input);
274 self
275 }
276 /// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p><note>
277 /// <ul>
278 /// <li>
279 /// <p>For tabular problem types: You must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p></li>
280 /// <li>
281 /// <p>For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for fine-tuning LLMs in Autopilot</a>.</p></li>
282 /// </ul>
283 /// </note>
284 pub fn set_auto_ml_job_objective(mut self, input: ::std::option::Option<crate::types::AutoMlJobObjective>) -> Self {
285 self.inner = self.inner.set_auto_ml_job_objective(input);
286 self
287 }
288 /// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p><note>
289 /// <ul>
290 /// <li>
291 /// <p>For tabular problem types: You must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p></li>
292 /// <li>
293 /// <p>For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for fine-tuning LLMs in Autopilot</a>.</p></li>
294 /// </ul>
295 /// </note>
296 pub fn get_auto_ml_job_objective(&self) -> &::std::option::Option<crate::types::AutoMlJobObjective> {
297 self.inner.get_auto_ml_job_objective()
298 }
299 /// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
300 pub fn model_deploy_config(mut self, input: crate::types::ModelDeployConfig) -> Self {
301 self.inner = self.inner.model_deploy_config(input);
302 self
303 }
304 /// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
305 pub fn set_model_deploy_config(mut self, input: ::std::option::Option<crate::types::ModelDeployConfig>) -> Self {
306 self.inner = self.inner.set_model_deploy_config(input);
307 self
308 }
309 /// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
310 pub fn get_model_deploy_config(&self) -> &::std::option::Option<crate::types::ModelDeployConfig> {
311 self.inner.get_model_deploy_config()
312 }
313 /// <p>This structure specifies how to split the data into train and validation datasets.</p>
314 /// <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p><note>
315 /// <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p>
316 /// </note>
317 pub fn data_split_config(mut self, input: crate::types::AutoMlDataSplitConfig) -> Self {
318 self.inner = self.inner.data_split_config(input);
319 self
320 }
321 /// <p>This structure specifies how to split the data into train and validation datasets.</p>
322 /// <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p><note>
323 /// <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p>
324 /// </note>
325 pub fn set_data_split_config(mut self, input: ::std::option::Option<crate::types::AutoMlDataSplitConfig>) -> Self {
326 self.inner = self.inner.set_data_split_config(input);
327 self
328 }
329 /// <p>This structure specifies how to split the data into train and validation datasets.</p>
330 /// <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p><note>
331 /// <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p>
332 /// </note>
333 pub fn get_data_split_config(&self) -> &::std::option::Option<crate::types::AutoMlDataSplitConfig> {
334 self.inner.get_data_split_config()
335 }
336 /// <p>Specifies the compute configuration for the AutoML job V2.</p>
337 pub fn auto_ml_compute_config(mut self, input: crate::types::AutoMlComputeConfig) -> Self {
338 self.inner = self.inner.auto_ml_compute_config(input);
339 self
340 }
341 /// <p>Specifies the compute configuration for the AutoML job V2.</p>
342 pub fn set_auto_ml_compute_config(mut self, input: ::std::option::Option<crate::types::AutoMlComputeConfig>) -> Self {
343 self.inner = self.inner.set_auto_ml_compute_config(input);
344 self
345 }
346 /// <p>Specifies the compute configuration for the AutoML job V2.</p>
347 pub fn get_auto_ml_compute_config(&self) -> &::std::option::Option<crate::types::AutoMlComputeConfig> {
348 self.inner.get_auto_ml_compute_config()
349 }
350}