1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::get_scaling_configuration_recommendation::_get_scaling_configuration_recommendation_output::GetScalingConfigurationRecommendationOutputBuilder;

pub use crate::operation::get_scaling_configuration_recommendation::_get_scaling_configuration_recommendation_input::GetScalingConfigurationRecommendationInputBuilder;

impl GetScalingConfigurationRecommendationInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.get_scaling_configuration_recommendation();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `GetScalingConfigurationRecommendation`.
///
/// <p>Starts an Amazon SageMaker Inference Recommender autoscaling recommendation job. Returns recommendations for autoscaling policies that you can apply to your SageMaker endpoint.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct GetScalingConfigurationRecommendationFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::get_scaling_configuration_recommendation::builders::GetScalingConfigurationRecommendationInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationOutput,
        crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationError,
    > for GetScalingConfigurationRecommendationFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationOutput,
            crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl GetScalingConfigurationRecommendationFluentBuilder {
    /// Creates a new `GetScalingConfigurationRecommendation`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the GetScalingConfigurationRecommendation as a reference.
    pub fn as_input(
        &self,
    ) -> &crate::operation::get_scaling_configuration_recommendation::builders::GetScalingConfigurationRecommendationInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins =
            crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendation::operation_runtime_plugins(
                self.handle.runtime_plugins.clone(),
                &self.handle.conf,
                self.config_override,
            );
        crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendation::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationOutput,
        crate::operation::get_scaling_configuration_recommendation::GetScalingConfigurationRecommendationError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>The name of a previously completed Inference Recommender job.</p>
    pub fn inference_recommendations_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.inference_recommendations_job_name(input.into());
        self
    }
    /// <p>The name of a previously completed Inference Recommender job.</p>
    pub fn set_inference_recommendations_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_inference_recommendations_job_name(input);
        self
    }
    /// <p>The name of a previously completed Inference Recommender job.</p>
    pub fn get_inference_recommendations_job_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_inference_recommendations_job_name()
    }
    /// <p>The recommendation ID of a previously completed inference recommendation. This ID should come from one of the recommendations returned by the job specified in the <code>InferenceRecommendationsJobName</code> field.</p>
    /// <p>Specify either this field or the <code>EndpointName</code> field.</p>
    pub fn recommendation_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.recommendation_id(input.into());
        self
    }
    /// <p>The recommendation ID of a previously completed inference recommendation. This ID should come from one of the recommendations returned by the job specified in the <code>InferenceRecommendationsJobName</code> field.</p>
    /// <p>Specify either this field or the <code>EndpointName</code> field.</p>
    pub fn set_recommendation_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_recommendation_id(input);
        self
    }
    /// <p>The recommendation ID of a previously completed inference recommendation. This ID should come from one of the recommendations returned by the job specified in the <code>InferenceRecommendationsJobName</code> field.</p>
    /// <p>Specify either this field or the <code>EndpointName</code> field.</p>
    pub fn get_recommendation_id(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_recommendation_id()
    }
    /// <p>The name of an endpoint benchmarked during a previously completed inference recommendation job. This name should come from one of the recommendations returned by the job specified in the <code>InferenceRecommendationsJobName</code> field.</p>
    /// <p>Specify either this field or the <code>RecommendationId</code> field.</p>
    pub fn endpoint_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.endpoint_name(input.into());
        self
    }
    /// <p>The name of an endpoint benchmarked during a previously completed inference recommendation job. This name should come from one of the recommendations returned by the job specified in the <code>InferenceRecommendationsJobName</code> field.</p>
    /// <p>Specify either this field or the <code>RecommendationId</code> field.</p>
    pub fn set_endpoint_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_endpoint_name(input);
        self
    }
    /// <p>The name of an endpoint benchmarked during a previously completed inference recommendation job. This name should come from one of the recommendations returned by the job specified in the <code>InferenceRecommendationsJobName</code> field.</p>
    /// <p>Specify either this field or the <code>RecommendationId</code> field.</p>
    pub fn get_endpoint_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_endpoint_name()
    }
    /// <p>The percentage of how much utilization you want an instance to use before autoscaling. The default value is 50%.</p>
    pub fn target_cpu_utilization_per_core(mut self, input: i32) -> Self {
        self.inner = self.inner.target_cpu_utilization_per_core(input);
        self
    }
    /// <p>The percentage of how much utilization you want an instance to use before autoscaling. The default value is 50%.</p>
    pub fn set_target_cpu_utilization_per_core(mut self, input: ::std::option::Option<i32>) -> Self {
        self.inner = self.inner.set_target_cpu_utilization_per_core(input);
        self
    }
    /// <p>The percentage of how much utilization you want an instance to use before autoscaling. The default value is 50%.</p>
    pub fn get_target_cpu_utilization_per_core(&self) -> &::std::option::Option<i32> {
        self.inner.get_target_cpu_utilization_per_core()
    }
    /// <p>An object where you specify the anticipated traffic pattern for an endpoint.</p>
    pub fn scaling_policy_objective(mut self, input: crate::types::ScalingPolicyObjective) -> Self {
        self.inner = self.inner.scaling_policy_objective(input);
        self
    }
    /// <p>An object where you specify the anticipated traffic pattern for an endpoint.</p>
    pub fn set_scaling_policy_objective(mut self, input: ::std::option::Option<crate::types::ScalingPolicyObjective>) -> Self {
        self.inner = self.inner.set_scaling_policy_objective(input);
        self
    }
    /// <p>An object where you specify the anticipated traffic pattern for an endpoint.</p>
    pub fn get_scaling_policy_objective(&self) -> &::std::option::Option<crate::types::ScalingPolicyObjective> {
        self.inner.get_scaling_policy_objective()
    }
}