1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_auto_ml_job_v2::_create_auto_ml_job_v2_output::CreateAutoMlJobV2OutputBuilder;

pub use crate::operation::create_auto_ml_job_v2::_create_auto_ml_job_v2_input::CreateAutoMlJobV2InputBuilder;

impl CreateAutoMlJobV2InputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.create_auto_ml_job_v2();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `CreateAutoMLJobV2`.
///
/// <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.</p> <note>
/// <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> are new versions of <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html">CreateAutoMLJob</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a> which offer backward compatibility.</p>
/// <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p>
/// <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment-api.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p>
/// </note>
/// <p>For the list of available problem types supported by <code>CreateAutoMLJobV2</code>, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html">AutoMLProblemTypeConfig</a>.</p>
/// <p>You can find the best-performing model after you run an AutoML job V2 by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateAutoMLJobV2FluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_auto_ml_job_v2::builders::CreateAutoMlJobV2InputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
        crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
    > for CreateAutoMLJobV2FluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
            crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl CreateAutoMLJobV2FluentBuilder {
    /// Creates a new `CreateAutoMLJobV2`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the CreateAutoMLJobV2 as a reference.
    pub fn as_input(&self) -> &crate::operation::create_auto_ml_job_v2::builders::CreateAutoMlJobV2InputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
        crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
    pub fn auto_ml_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.auto_ml_job_name(input.into());
        self
    }
    /// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
    pub fn set_auto_ml_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_auto_ml_job_name(input);
        self
    }
    /// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
    pub fn get_auto_ml_job_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_auto_ml_job_name()
    }
    /// Appends an item to `AutoMLJobInputDataConfig`.
    ///
    /// To override the contents of this collection use [`set_auto_ml_job_input_data_config`](Self::set_auto_ml_job_input_data_config).
    ///
    /// <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p>
    /// <ul>
    /// <li> <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p> </li>
    /// <li> <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p> </li>
    /// <li> <p>For text classification: <code>S3Prefix</code>.</p> </li>
    /// <li> <p>For time-series forecasting: <code>S3Prefix</code>.</p> </li>
    /// <li> <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p> </li>
    /// </ul>
    pub fn auto_ml_job_input_data_config(mut self, input: crate::types::AutoMlJobChannel) -> Self {
        self.inner = self.inner.auto_ml_job_input_data_config(input);
        self
    }
    /// <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p>
    /// <ul>
    /// <li> <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p> </li>
    /// <li> <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p> </li>
    /// <li> <p>For text classification: <code>S3Prefix</code>.</p> </li>
    /// <li> <p>For time-series forecasting: <code>S3Prefix</code>.</p> </li>
    /// <li> <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p> </li>
    /// </ul>
    pub fn set_auto_ml_job_input_data_config(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::AutoMlJobChannel>>) -> Self {
        self.inner = self.inner.set_auto_ml_job_input_data_config(input);
        self
    }
    /// <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p>
    /// <ul>
    /// <li> <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p> </li>
    /// <li> <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p> </li>
    /// <li> <p>For text classification: <code>S3Prefix</code>.</p> </li>
    /// <li> <p>For time-series forecasting: <code>S3Prefix</code>.</p> </li>
    /// <li> <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p> </li>
    /// </ul>
    pub fn get_auto_ml_job_input_data_config(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::AutoMlJobChannel>> {
        self.inner.get_auto_ml_job_input_data_config()
    }
    /// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
    pub fn output_data_config(mut self, input: crate::types::AutoMlOutputDataConfig) -> Self {
        self.inner = self.inner.output_data_config(input);
        self
    }
    /// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
    pub fn set_output_data_config(mut self, input: ::std::option::Option<crate::types::AutoMlOutputDataConfig>) -> Self {
        self.inner = self.inner.set_output_data_config(input);
        self
    }
    /// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
    pub fn get_output_data_config(&self) -> &::std::option::Option<crate::types::AutoMlOutputDataConfig> {
        self.inner.get_output_data_config()
    }
    /// <p>Defines the configuration settings of one of the supported problem types.</p>
    pub fn auto_ml_problem_type_config(mut self, input: crate::types::AutoMlProblemTypeConfig) -> Self {
        self.inner = self.inner.auto_ml_problem_type_config(input);
        self
    }
    /// <p>Defines the configuration settings of one of the supported problem types.</p>
    pub fn set_auto_ml_problem_type_config(mut self, input: ::std::option::Option<crate::types::AutoMlProblemTypeConfig>) -> Self {
        self.inner = self.inner.set_auto_ml_problem_type_config(input);
        self
    }
    /// <p>Defines the configuration settings of one of the supported problem types.</p>
    pub fn get_auto_ml_problem_type_config(&self) -> &::std::option::Option<crate::types::AutoMlProblemTypeConfig> {
        self.inner.get_auto_ml_problem_type_config()
    }
    /// <p>The ARN of the role that is used to access the data.</p>
    pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.role_arn(input.into());
        self
    }
    /// <p>The ARN of the role that is used to access the data.</p>
    pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_role_arn(input);
        self
    }
    /// <p>The ARN of the role that is used to access the data.</p>
    pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_role_arn()
    }
    /// Appends an item to `Tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
    pub fn tags(mut self, input: crate::types::Tag) -> Self {
        self.inner = self.inner.tags(input);
        self
    }
    /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
        self.inner = self.inner.set_tags(input);
        self
    }
    /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
        self.inner.get_tags()
    }
    /// <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
    pub fn security_config(mut self, input: crate::types::AutoMlSecurityConfig) -> Self {
        self.inner = self.inner.security_config(input);
        self
    }
    /// <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
    pub fn set_security_config(mut self, input: ::std::option::Option<crate::types::AutoMlSecurityConfig>) -> Self {
        self.inner = self.inner.set_security_config(input);
        self
    }
    /// <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
    pub fn get_security_config(&self) -> &::std::option::Option<crate::types::AutoMlSecurityConfig> {
        self.inner.get_security_config()
    }
    /// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p> <note>
    /// <ul>
    /// <li> <p>For tabular problem types: You must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p> </li>
    /// <li> <p>For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for fine-tuning LLMs in Autopilot</a>.</p> </li>
    /// </ul>
    /// </note>
    pub fn auto_ml_job_objective(mut self, input: crate::types::AutoMlJobObjective) -> Self {
        self.inner = self.inner.auto_ml_job_objective(input);
        self
    }
    /// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p> <note>
    /// <ul>
    /// <li> <p>For tabular problem types: You must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p> </li>
    /// <li> <p>For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for fine-tuning LLMs in Autopilot</a>.</p> </li>
    /// </ul>
    /// </note>
    pub fn set_auto_ml_job_objective(mut self, input: ::std::option::Option<crate::types::AutoMlJobObjective>) -> Self {
        self.inner = self.inner.set_auto_ml_job_objective(input);
        self
    }
    /// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p> <note>
    /// <ul>
    /// <li> <p>For tabular problem types: You must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p> </li>
    /// <li> <p>For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for fine-tuning LLMs in Autopilot</a>.</p> </li>
    /// </ul>
    /// </note>
    pub fn get_auto_ml_job_objective(&self) -> &::std::option::Option<crate::types::AutoMlJobObjective> {
        self.inner.get_auto_ml_job_objective()
    }
    /// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
    pub fn model_deploy_config(mut self, input: crate::types::ModelDeployConfig) -> Self {
        self.inner = self.inner.model_deploy_config(input);
        self
    }
    /// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
    pub fn set_model_deploy_config(mut self, input: ::std::option::Option<crate::types::ModelDeployConfig>) -> Self {
        self.inner = self.inner.set_model_deploy_config(input);
        self
    }
    /// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
    pub fn get_model_deploy_config(&self) -> &::std::option::Option<crate::types::ModelDeployConfig> {
        self.inner.get_model_deploy_config()
    }
    /// <p>This structure specifies how to split the data into train and validation datasets.</p>
    /// <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p> <note>
    /// <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p>
    /// </note>
    pub fn data_split_config(mut self, input: crate::types::AutoMlDataSplitConfig) -> Self {
        self.inner = self.inner.data_split_config(input);
        self
    }
    /// <p>This structure specifies how to split the data into train and validation datasets.</p>
    /// <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p> <note>
    /// <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p>
    /// </note>
    pub fn set_data_split_config(mut self, input: ::std::option::Option<crate::types::AutoMlDataSplitConfig>) -> Self {
        self.inner = self.inner.set_data_split_config(input);
        self
    }
    /// <p>This structure specifies how to split the data into train and validation datasets.</p>
    /// <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p> <note>
    /// <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p>
    /// </note>
    pub fn get_data_split_config(&self) -> &::std::option::Option<crate::types::AutoMlDataSplitConfig> {
        self.inner.get_data_split_config()
    }
}