1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_auto_ml_job_v2::_create_auto_ml_job_v2_output::CreateAutoMlJobV2OutputBuilder;
pub use crate::operation::create_auto_ml_job_v2::_create_auto_ml_job_v2_input::CreateAutoMlJobV2InputBuilder;
impl CreateAutoMlJobV2InputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.create_auto_ml_job_v2();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `CreateAutoMLJobV2`.
///
/// <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.</p> <note>
/// <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> are new versions of <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html">CreateAutoMLJob</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a> which offer backward compatibility.</p>
/// <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p>
/// <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment-api.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p>
/// </note>
/// <p>For the list of available problem types supported by <code>CreateAutoMLJobV2</code>, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html">AutoMLProblemTypeConfig</a>.</p>
/// <p>You can find the best-performing model after you run an AutoML job V2 by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateAutoMLJobV2FluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_auto_ml_job_v2::builders::CreateAutoMlJobV2InputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
> for CreateAutoMLJobV2FluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl CreateAutoMLJobV2FluentBuilder {
/// Creates a new `CreateAutoMLJobV2`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the CreateAutoMLJobV2 as a reference.
pub fn as_input(&self) -> &crate::operation::create_auto_ml_job_v2::builders::CreateAutoMlJobV2InputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output,
crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
self.set_config_override(Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
pub fn auto_ml_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.auto_ml_job_name(input.into());
self
}
/// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
pub fn set_auto_ml_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_auto_ml_job_name(input);
self
}
/// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
pub fn get_auto_ml_job_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_auto_ml_job_name()
}
/// Appends an item to `AutoMLJobInputDataConfig`.
///
/// To override the contents of this collection use [`set_auto_ml_job_input_data_config`](Self::set_auto_ml_job_input_data_config).
///
/// <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p>
/// <ul>
/// <li> <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p> </li>
/// <li> <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p> </li>
/// <li> <p>For text classification: <code>S3Prefix</code>.</p> </li>
/// <li> <p>For time-series forecasting: <code>S3Prefix</code>.</p> </li>
/// <li> <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p> </li>
/// </ul>
pub fn auto_ml_job_input_data_config(mut self, input: crate::types::AutoMlJobChannel) -> Self {
self.inner = self.inner.auto_ml_job_input_data_config(input);
self
}
/// <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p>
/// <ul>
/// <li> <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p> </li>
/// <li> <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p> </li>
/// <li> <p>For text classification: <code>S3Prefix</code>.</p> </li>
/// <li> <p>For time-series forecasting: <code>S3Prefix</code>.</p> </li>
/// <li> <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p> </li>
/// </ul>
pub fn set_auto_ml_job_input_data_config(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::AutoMlJobChannel>>) -> Self {
self.inner = self.inner.set_auto_ml_job_input_data_config(input);
self
}
/// <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p>
/// <ul>
/// <li> <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p> </li>
/// <li> <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p> </li>
/// <li> <p>For text classification: <code>S3Prefix</code>.</p> </li>
/// <li> <p>For time-series forecasting: <code>S3Prefix</code>.</p> </li>
/// <li> <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p> </li>
/// </ul>
pub fn get_auto_ml_job_input_data_config(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::AutoMlJobChannel>> {
self.inner.get_auto_ml_job_input_data_config()
}
/// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
pub fn output_data_config(mut self, input: crate::types::AutoMlOutputDataConfig) -> Self {
self.inner = self.inner.output_data_config(input);
self
}
/// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
pub fn set_output_data_config(mut self, input: ::std::option::Option<crate::types::AutoMlOutputDataConfig>) -> Self {
self.inner = self.inner.set_output_data_config(input);
self
}
/// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
pub fn get_output_data_config(&self) -> &::std::option::Option<crate::types::AutoMlOutputDataConfig> {
self.inner.get_output_data_config()
}
/// <p>Defines the configuration settings of one of the supported problem types.</p>
pub fn auto_ml_problem_type_config(mut self, input: crate::types::AutoMlProblemTypeConfig) -> Self {
self.inner = self.inner.auto_ml_problem_type_config(input);
self
}
/// <p>Defines the configuration settings of one of the supported problem types.</p>
pub fn set_auto_ml_problem_type_config(mut self, input: ::std::option::Option<crate::types::AutoMlProblemTypeConfig>) -> Self {
self.inner = self.inner.set_auto_ml_problem_type_config(input);
self
}
/// <p>Defines the configuration settings of one of the supported problem types.</p>
pub fn get_auto_ml_problem_type_config(&self) -> &::std::option::Option<crate::types::AutoMlProblemTypeConfig> {
self.inner.get_auto_ml_problem_type_config()
}
/// <p>The ARN of the role that is used to access the data.</p>
pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.role_arn(input.into());
self
}
/// <p>The ARN of the role that is used to access the data.</p>
pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_role_arn(input);
self
}
/// <p>The ARN of the role that is used to access the data.</p>
pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_role_arn()
}
/// Appends an item to `Tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
self.inner = self.inner.tags(input);
self
}
/// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
self.inner = self.inner.set_tags(input);
self
}
/// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
self.inner.get_tags()
}
/// <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
pub fn security_config(mut self, input: crate::types::AutoMlSecurityConfig) -> Self {
self.inner = self.inner.security_config(input);
self
}
/// <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
pub fn set_security_config(mut self, input: ::std::option::Option<crate::types::AutoMlSecurityConfig>) -> Self {
self.inner = self.inner.set_security_config(input);
self
}
/// <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
pub fn get_security_config(&self) -> &::std::option::Option<crate::types::AutoMlSecurityConfig> {
self.inner.get_security_config()
}
/// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p> <note>
/// <ul>
/// <li> <p>For tabular problem types: You must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p> </li>
/// <li> <p>For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for fine-tuning LLMs in Autopilot</a>.</p> </li>
/// </ul>
/// </note>
pub fn auto_ml_job_objective(mut self, input: crate::types::AutoMlJobObjective) -> Self {
self.inner = self.inner.auto_ml_job_objective(input);
self
}
/// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p> <note>
/// <ul>
/// <li> <p>For tabular problem types: You must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p> </li>
/// <li> <p>For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for fine-tuning LLMs in Autopilot</a>.</p> </li>
/// </ul>
/// </note>
pub fn set_auto_ml_job_objective(mut self, input: ::std::option::Option<crate::types::AutoMlJobObjective>) -> Self {
self.inner = self.inner.set_auto_ml_job_objective(input);
self
}
/// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p> <note>
/// <ul>
/// <li> <p>For tabular problem types: You must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p> </li>
/// <li> <p>For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for fine-tuning LLMs in Autopilot</a>.</p> </li>
/// </ul>
/// </note>
pub fn get_auto_ml_job_objective(&self) -> &::std::option::Option<crate::types::AutoMlJobObjective> {
self.inner.get_auto_ml_job_objective()
}
/// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
pub fn model_deploy_config(mut self, input: crate::types::ModelDeployConfig) -> Self {
self.inner = self.inner.model_deploy_config(input);
self
}
/// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
pub fn set_model_deploy_config(mut self, input: ::std::option::Option<crate::types::ModelDeployConfig>) -> Self {
self.inner = self.inner.set_model_deploy_config(input);
self
}
/// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
pub fn get_model_deploy_config(&self) -> &::std::option::Option<crate::types::ModelDeployConfig> {
self.inner.get_model_deploy_config()
}
/// <p>This structure specifies how to split the data into train and validation datasets.</p>
/// <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p> <note>
/// <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p>
/// </note>
pub fn data_split_config(mut self, input: crate::types::AutoMlDataSplitConfig) -> Self {
self.inner = self.inner.data_split_config(input);
self
}
/// <p>This structure specifies how to split the data into train and validation datasets.</p>
/// <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p> <note>
/// <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p>
/// </note>
pub fn set_data_split_config(mut self, input: ::std::option::Option<crate::types::AutoMlDataSplitConfig>) -> Self {
self.inner = self.inner.set_data_split_config(input);
self
}
/// <p>This structure specifies how to split the data into train and validation datasets.</p>
/// <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p> <note>
/// <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p>
/// </note>
pub fn get_data_split_config(&self) -> &::std::option::Option<crate::types::AutoMlDataSplitConfig> {
self.inner.get_data_split_config()
}
}