// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
impl super::Client {
/// Constructs a fluent builder for the [`CreateAutoMLJobV2`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder) operation.
///
/// - The fluent builder is configurable:
/// - [`auto_ml_job_name(impl Into<String>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::auto_ml_job_name) / [`set_auto_ml_job_name(Option<String>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_auto_ml_job_name): <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
/// - [`auto_ml_job_input_data_config(AutoMlJobChannel)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::auto_ml_job_input_data_config) / [`set_auto_ml_job_input_data_config(Option<Vec<AutoMlJobChannel>>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_auto_ml_job_input_data_config): <p>An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters. The supported formats depend on the problem type:</p> <ul> <li> <p>For tabular problem types: <code>S3Prefix</code>, <code>ManifestFile</code>.</p> </li> <li> <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>, <code>AugmentedManifestFile</code>.</p> </li> <li> <p>For text classification: <code>S3Prefix</code>.</p> </li> <li> <p>For time-series forecasting: <code>S3Prefix</code>.</p> </li> </ul>
/// - [`output_data_config(AutoMlOutputDataConfig)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::output_data_config) / [`set_output_data_config(Option<AutoMlOutputDataConfig>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_output_data_config): <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.</p>
/// - [`auto_ml_problem_type_config(AutoMlProblemTypeConfig)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::auto_ml_problem_type_config) / [`set_auto_ml_problem_type_config(Option<AutoMlProblemTypeConfig>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_auto_ml_problem_type_config): <p>Defines the configuration settings of one of the supported problem types.</p>
/// - [`role_arn(impl Into<String>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::role_arn) / [`set_role_arn(Option<String>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_role_arn): <p>The ARN of the role that is used to access the data.</p>
/// - [`tags(Tag)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::tags) / [`set_tags(Option<Vec<Tag>>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_tags): <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
/// - [`security_config(AutoMlSecurityConfig)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::security_config) / [`set_security_config(Option<AutoMlSecurityConfig>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_security_config): <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
/// - [`auto_ml_job_objective(AutoMlJobObjective)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::auto_ml_job_objective) / [`set_auto_ml_job_objective(Option<AutoMlJobObjective>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_auto_ml_job_objective): <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p> <note> <p>For tabular problem types, you must either provide both the <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or none at all.</p> </note>
/// - [`model_deploy_config(ModelDeployConfig)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::model_deploy_config) / [`set_model_deploy_config(Option<ModelDeployConfig>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_model_deploy_config): <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
/// - [`data_split_config(AutoMlDataSplitConfig)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::data_split_config) / [`set_data_split_config(Option<AutoMlDataSplitConfig>)`](crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::set_data_split_config): <p>This structure specifies how to split the data into train and validation datasets.</p> <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p> <note> <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p> </note>
/// - On success, responds with [`CreateAutoMlJobV2Output`](crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output) with field(s):
/// - [`auto_ml_job_arn(Option<String>)`](crate::operation::create_auto_ml_job_v2::CreateAutoMlJobV2Output::auto_ml_job_arn): <p>The unique ARN assigned to the AutoMLJob when it is created.</p>
/// - On failure, responds with [`SdkError<CreateAutoMLJobV2Error>`](crate::operation::create_auto_ml_job_v2::CreateAutoMLJobV2Error)
pub fn create_auto_ml_job_v2(&self) -> crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder {
crate::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder::new(self.handle.clone())
}
}