1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::update_inference_experiment::_update_inference_experiment_output::UpdateInferenceExperimentOutputBuilder;
pub use crate::operation::update_inference_experiment::_update_inference_experiment_input::UpdateInferenceExperimentInputBuilder;
impl UpdateInferenceExperimentInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::update_inference_experiment::UpdateInferenceExperimentOutput,
::aws_smithy_http::result::SdkError<
crate::operation::update_inference_experiment::UpdateInferenceExperimentError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.update_inference_experiment();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `UpdateInferenceExperiment`.
///
/// <p> Updates an inference experiment that you created. The status of the inference experiment has to be either <code>Created</code>, <code>Running</code>. For more information on the status of an inference experiment, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeInferenceExperiment.html">DescribeInferenceExperiment</a>. </p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct UpdateInferenceExperimentFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::update_inference_experiment::builders::UpdateInferenceExperimentInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl UpdateInferenceExperimentFluentBuilder {
/// Creates a new `UpdateInferenceExperiment`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the UpdateInferenceExperiment as a reference.
pub fn as_input(&self) -> &crate::operation::update_inference_experiment::builders::UpdateInferenceExperimentInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::update_inference_experiment::UpdateInferenceExperimentOutput,
::aws_smithy_http::result::SdkError<
crate::operation::update_inference_experiment::UpdateInferenceExperimentError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self.inner.build().map_err(::aws_smithy_http::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::update_inference_experiment::UpdateInferenceExperiment::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::update_inference_experiment::UpdateInferenceExperiment::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being
/// sent.
// TODO(enableNewSmithyRuntimeCleanup): Remove `async` and `Result` once we switch to orchestrator
pub async fn customize(
self,
) -> ::std::result::Result<
crate::client::customize::orchestrator::CustomizableOperation<
crate::operation::update_inference_experiment::UpdateInferenceExperimentOutput,
crate::operation::update_inference_experiment::UpdateInferenceExperimentError,
>,
::aws_smithy_http::result::SdkError<crate::operation::update_inference_experiment::UpdateInferenceExperimentError>,
> {
::std::result::Result::Ok(crate::client::customize::orchestrator::CustomizableOperation {
customizable_send: ::std::boxed::Box::new(move |config_override| {
::std::boxed::Box::pin(async { self.config_override(config_override).send().await })
}),
config_override: None,
interceptors: vec![],
runtime_plugins: vec![],
})
}
pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
self.set_config_override(Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>The name of the inference experiment to be updated.</p>
pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.name(input.into());
self
}
/// <p>The name of the inference experiment to be updated.</p>
pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_name(input);
self
}
/// <p>The name of the inference experiment to be updated.</p>
pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_name()
}
/// <p> The duration for which the inference experiment will run. If the status of the inference experiment is <code>Created</code>, then you can update both the start and end dates. If the status of the inference experiment is <code>Running</code>, then you can update only the end date. </p>
pub fn schedule(mut self, input: crate::types::InferenceExperimentSchedule) -> Self {
self.inner = self.inner.schedule(input);
self
}
/// <p> The duration for which the inference experiment will run. If the status of the inference experiment is <code>Created</code>, then you can update both the start and end dates. If the status of the inference experiment is <code>Running</code>, then you can update only the end date. </p>
pub fn set_schedule(mut self, input: ::std::option::Option<crate::types::InferenceExperimentSchedule>) -> Self {
self.inner = self.inner.set_schedule(input);
self
}
/// <p> The duration for which the inference experiment will run. If the status of the inference experiment is <code>Created</code>, then you can update both the start and end dates. If the status of the inference experiment is <code>Running</code>, then you can update only the end date. </p>
pub fn get_schedule(&self) -> &::std::option::Option<crate::types::InferenceExperimentSchedule> {
self.inner.get_schedule()
}
/// <p>The description of the inference experiment.</p>
pub fn description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.description(input.into());
self
}
/// <p>The description of the inference experiment.</p>
pub fn set_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_description(input);
self
}
/// <p>The description of the inference experiment.</p>
pub fn get_description(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_description()
}
/// Appends an item to `ModelVariants`.
///
/// To override the contents of this collection use [`set_model_variants`](Self::set_model_variants).
///
/// <p> An array of <code>ModelVariantConfig</code> objects. There is one for each variant, whose infrastructure configuration you want to update. </p>
pub fn model_variants(mut self, input: crate::types::ModelVariantConfig) -> Self {
self.inner = self.inner.model_variants(input);
self
}
/// <p> An array of <code>ModelVariantConfig</code> objects. There is one for each variant, whose infrastructure configuration you want to update. </p>
pub fn set_model_variants(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::ModelVariantConfig>>) -> Self {
self.inner = self.inner.set_model_variants(input);
self
}
/// <p> An array of <code>ModelVariantConfig</code> objects. There is one for each variant, whose infrastructure configuration you want to update. </p>
pub fn get_model_variants(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::ModelVariantConfig>> {
self.inner.get_model_variants()
}
/// <p>The Amazon S3 location and configuration for storing inference request and response data.</p>
pub fn data_storage_config(mut self, input: crate::types::InferenceExperimentDataStorageConfig) -> Self {
self.inner = self.inner.data_storage_config(input);
self
}
/// <p>The Amazon S3 location and configuration for storing inference request and response data.</p>
pub fn set_data_storage_config(mut self, input: ::std::option::Option<crate::types::InferenceExperimentDataStorageConfig>) -> Self {
self.inner = self.inner.set_data_storage_config(input);
self
}
/// <p>The Amazon S3 location and configuration for storing inference request and response data.</p>
pub fn get_data_storage_config(&self) -> &::std::option::Option<crate::types::InferenceExperimentDataStorageConfig> {
self.inner.get_data_storage_config()
}
/// <p> The configuration of <code>ShadowMode</code> inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates. </p>
pub fn shadow_mode_config(mut self, input: crate::types::ShadowModeConfig) -> Self {
self.inner = self.inner.shadow_mode_config(input);
self
}
/// <p> The configuration of <code>ShadowMode</code> inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates. </p>
pub fn set_shadow_mode_config(mut self, input: ::std::option::Option<crate::types::ShadowModeConfig>) -> Self {
self.inner = self.inner.set_shadow_mode_config(input);
self
}
/// <p> The configuration of <code>ShadowMode</code> inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates. </p>
pub fn get_shadow_mode_config(&self) -> &::std::option::Option<crate::types::ShadowModeConfig> {
self.inner.get_shadow_mode_config()
}
}