1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_algorithm::_create_algorithm_output::CreateAlgorithmOutputBuilder;
pub use crate::operation::create_algorithm::_create_algorithm_input::CreateAlgorithmInputBuilder;
/// Fluent builder constructing a request to `CreateAlgorithm`.
///
/// <p>Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.</p>
#[derive(std::clone::Clone, std::fmt::Debug)]
pub struct CreateAlgorithmFluentBuilder {
handle: std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_algorithm::builders::CreateAlgorithmInputBuilder,
}
impl CreateAlgorithmFluentBuilder {
/// Creates a new `CreateAlgorithm`.
pub(crate) fn new(handle: std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: Default::default(),
}
}
/// Consume this builder, creating a customizable operation that can be modified before being
/// sent. The operation's inner [http::Request] can be modified as well.
pub async fn customize(
self,
) -> std::result::Result<
crate::client::customize::CustomizableOperation<
crate::operation::create_algorithm::CreateAlgorithm,
aws_http::retry::AwsResponseRetryClassifier,
>,
aws_smithy_http::result::SdkError<crate::operation::create_algorithm::CreateAlgorithmError>,
> {
let handle = self.handle.clone();
let operation = self
.inner
.build()
.map_err(aws_smithy_http::result::SdkError::construction_failure)?
.make_operation(&handle.conf)
.await
.map_err(aws_smithy_http::result::SdkError::construction_failure)?;
Ok(crate::client::customize::CustomizableOperation { handle, operation })
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> std::result::Result<
crate::operation::create_algorithm::CreateAlgorithmOutput,
aws_smithy_http::result::SdkError<crate::operation::create_algorithm::CreateAlgorithmError>,
> {
let op = self
.inner
.build()
.map_err(aws_smithy_http::result::SdkError::construction_failure)?
.make_operation(&self.handle.conf)
.await
.map_err(aws_smithy_http::result::SdkError::construction_failure)?;
self.handle.client.call(op).await
}
/// <p>The name of the algorithm.</p>
pub fn algorithm_name(mut self, input: impl Into<std::string::String>) -> Self {
self.inner = self.inner.algorithm_name(input.into());
self
}
/// <p>The name of the algorithm.</p>
pub fn set_algorithm_name(mut self, input: std::option::Option<std::string::String>) -> Self {
self.inner = self.inner.set_algorithm_name(input);
self
}
/// <p>A description of the algorithm.</p>
pub fn algorithm_description(mut self, input: impl Into<std::string::String>) -> Self {
self.inner = self.inner.algorithm_description(input.into());
self
}
/// <p>A description of the algorithm.</p>
pub fn set_algorithm_description(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.inner = self.inner.set_algorithm_description(input);
self
}
/// <p>Specifies details about training jobs run by this algorithm, including the following:</p>
/// <ul>
/// <li> <p>The Amazon ECR path of the container and the version digest of the algorithm.</p> </li>
/// <li> <p>The hyperparameters that the algorithm supports.</p> </li>
/// <li> <p>The instance types that the algorithm supports for training.</p> </li>
/// <li> <p>Whether the algorithm supports distributed training.</p> </li>
/// <li> <p>The metrics that the algorithm emits to Amazon CloudWatch.</p> </li>
/// <li> <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p> </li>
/// <li> <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p> </li>
/// </ul>
pub fn training_specification(mut self, input: crate::types::TrainingSpecification) -> Self {
self.inner = self.inner.training_specification(input);
self
}
/// <p>Specifies details about training jobs run by this algorithm, including the following:</p>
/// <ul>
/// <li> <p>The Amazon ECR path of the container and the version digest of the algorithm.</p> </li>
/// <li> <p>The hyperparameters that the algorithm supports.</p> </li>
/// <li> <p>The instance types that the algorithm supports for training.</p> </li>
/// <li> <p>Whether the algorithm supports distributed training.</p> </li>
/// <li> <p>The metrics that the algorithm emits to Amazon CloudWatch.</p> </li>
/// <li> <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p> </li>
/// <li> <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p> </li>
/// </ul>
pub fn set_training_specification(
mut self,
input: std::option::Option<crate::types::TrainingSpecification>,
) -> Self {
self.inner = self.inner.set_training_specification(input);
self
}
/// <p>Specifies details about inference jobs that the algorithm runs, including the following:</p>
/// <ul>
/// <li> <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p> </li>
/// <li> <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p> </li>
/// <li> <p>The input and output content formats that the algorithm supports for inference.</p> </li>
/// </ul>
pub fn inference_specification(mut self, input: crate::types::InferenceSpecification) -> Self {
self.inner = self.inner.inference_specification(input);
self
}
/// <p>Specifies details about inference jobs that the algorithm runs, including the following:</p>
/// <ul>
/// <li> <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p> </li>
/// <li> <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p> </li>
/// <li> <p>The input and output content formats that the algorithm supports for inference.</p> </li>
/// </ul>
pub fn set_inference_specification(
mut self,
input: std::option::Option<crate::types::InferenceSpecification>,
) -> Self {
self.inner = self.inner.set_inference_specification(input);
self
}
/// <p>Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.</p>
pub fn validation_specification(
mut self,
input: crate::types::AlgorithmValidationSpecification,
) -> Self {
self.inner = self.inner.validation_specification(input);
self
}
/// <p>Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.</p>
pub fn set_validation_specification(
mut self,
input: std::option::Option<crate::types::AlgorithmValidationSpecification>,
) -> Self {
self.inner = self.inner.set_validation_specification(input);
self
}
/// <p>Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.</p>
pub fn certify_for_marketplace(mut self, input: bool) -> Self {
self.inner = self.inner.certify_for_marketplace(input);
self
}
/// <p>Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.</p>
pub fn set_certify_for_marketplace(mut self, input: std::option::Option<bool>) -> Self {
self.inner = self.inner.set_certify_for_marketplace(input);
self
}
/// Appends an item to `Tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
self.inner = self.inner.tags(input);
self
}
/// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
pub fn set_tags(
mut self,
input: std::option::Option<std::vec::Vec<crate::types::Tag>>,
) -> Self {
self.inner = self.inner.set_tags(input);
self
}
}