1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::update_inference_experiment::_update_inference_experiment_output::UpdateInferenceExperimentOutputBuilder;

pub use crate::operation::update_inference_experiment::_update_inference_experiment_input::UpdateInferenceExperimentInputBuilder;

/// Fluent builder constructing a request to `UpdateInferenceExperiment`.
///
/// <p> Updates an inference experiment that you created. The status of the inference experiment has to be either <code>Created</code>, <code>Running</code>. For more information on the status of an inference experiment, see <code>DescribeInferenceExperimentResponse$Status</code>. </p>
#[derive(std::clone::Clone, std::fmt::Debug)]
pub struct UpdateInferenceExperimentFluentBuilder {
                handle: std::sync::Arc<crate::client::Handle>,
                inner: crate::operation::update_inference_experiment::builders::UpdateInferenceExperimentInputBuilder
            }
impl UpdateInferenceExperimentFluentBuilder {
    /// Creates a new `UpdateInferenceExperiment`.
    pub(crate) fn new(handle: std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: Default::default(),
        }
    }

    /// Consume this builder, creating a customizable operation that can be modified before being
    /// sent. The operation's inner [http::Request] can be modified as well.
    pub async fn customize(
        self,
    ) -> std::result::Result<
        crate::client::customize::CustomizableOperation<
            crate::operation::update_inference_experiment::UpdateInferenceExperiment,
            aws_http::retry::AwsResponseRetryClassifier,
        >,
        aws_smithy_http::result::SdkError<
            crate::operation::update_inference_experiment::UpdateInferenceExperimentError,
        >,
    > {
        let handle = self.handle.clone();
        let operation = self
            .inner
            .build()
            .map_err(aws_smithy_http::result::SdkError::construction_failure)?
            .make_operation(&handle.conf)
            .await
            .map_err(aws_smithy_http::result::SdkError::construction_failure)?;
        Ok(crate::client::customize::CustomizableOperation { handle, operation })
    }

    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> std::result::Result<
        crate::operation::update_inference_experiment::UpdateInferenceExperimentOutput,
        aws_smithy_http::result::SdkError<
            crate::operation::update_inference_experiment::UpdateInferenceExperimentError,
        >,
    > {
        let op = self
            .inner
            .build()
            .map_err(aws_smithy_http::result::SdkError::construction_failure)?
            .make_operation(&self.handle.conf)
            .await
            .map_err(aws_smithy_http::result::SdkError::construction_failure)?;
        self.handle.client.call(op).await
    }
    /// <p>The name of the inference experiment to be updated.</p>
    pub fn name(mut self, input: impl Into<std::string::String>) -> Self {
        self.inner = self.inner.name(input.into());
        self
    }
    /// <p>The name of the inference experiment to be updated.</p>
    pub fn set_name(mut self, input: std::option::Option<std::string::String>) -> Self {
        self.inner = self.inner.set_name(input);
        self
    }
    /// <p> The duration for which the inference experiment will run. If the status of the inference experiment is <code>Created</code>, then you can update both the start and end dates. If the status of the inference experiment is <code>Running</code>, then you can update only the end date. </p>
    pub fn schedule(mut self, input: crate::types::InferenceExperimentSchedule) -> Self {
        self.inner = self.inner.schedule(input);
        self
    }
    /// <p> The duration for which the inference experiment will run. If the status of the inference experiment is <code>Created</code>, then you can update both the start and end dates. If the status of the inference experiment is <code>Running</code>, then you can update only the end date. </p>
    pub fn set_schedule(
        mut self,
        input: std::option::Option<crate::types::InferenceExperimentSchedule>,
    ) -> Self {
        self.inner = self.inner.set_schedule(input);
        self
    }
    /// <p>The description of the inference experiment.</p>
    pub fn description(mut self, input: impl Into<std::string::String>) -> Self {
        self.inner = self.inner.description(input.into());
        self
    }
    /// <p>The description of the inference experiment.</p>
    pub fn set_description(mut self, input: std::option::Option<std::string::String>) -> Self {
        self.inner = self.inner.set_description(input);
        self
    }
    /// Appends an item to `ModelVariants`.
    ///
    /// To override the contents of this collection use [`set_model_variants`](Self::set_model_variants).
    ///
    /// <p> An array of <code>ModelVariantConfig</code> objects. There is one for each variant, whose infrastructure configuration you want to update. </p>
    pub fn model_variants(mut self, input: crate::types::ModelVariantConfig) -> Self {
        self.inner = self.inner.model_variants(input);
        self
    }
    /// <p> An array of <code>ModelVariantConfig</code> objects. There is one for each variant, whose infrastructure configuration you want to update. </p>
    pub fn set_model_variants(
        mut self,
        input: std::option::Option<std::vec::Vec<crate::types::ModelVariantConfig>>,
    ) -> Self {
        self.inner = self.inner.set_model_variants(input);
        self
    }
    /// <p>The Amazon S3 location and configuration for storing inference request and response data.</p>
    pub fn data_storage_config(
        mut self,
        input: crate::types::InferenceExperimentDataStorageConfig,
    ) -> Self {
        self.inner = self.inner.data_storage_config(input);
        self
    }
    /// <p>The Amazon S3 location and configuration for storing inference request and response data.</p>
    pub fn set_data_storage_config(
        mut self,
        input: std::option::Option<crate::types::InferenceExperimentDataStorageConfig>,
    ) -> Self {
        self.inner = self.inner.set_data_storage_config(input);
        self
    }
    /// <p> The configuration of <code>ShadowMode</code> inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates. </p>
    pub fn shadow_mode_config(mut self, input: crate::types::ShadowModeConfig) -> Self {
        self.inner = self.inner.shadow_mode_config(input);
        self
    }
    /// <p> The configuration of <code>ShadowMode</code> inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates. </p>
    pub fn set_shadow_mode_config(
        mut self,
        input: std::option::Option<crate::types::ShadowModeConfig>,
    ) -> Self {
        self.inner = self.inner.set_shadow_mode_config(input);
        self
    }
}