aws_sdk_rekognition/operation/detect_labels/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::detect_labels::_detect_labels_output::DetectLabelsOutputBuilder;
3
4pub use crate::operation::detect_labels::_detect_labels_input::DetectLabelsInputBuilder;
5
6impl crate::operation::detect_labels::builders::DetectLabelsInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::detect_labels::DetectLabelsOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::detect_labels::DetectLabelsError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.detect_labels();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `DetectLabels`.
24///
25/// <p>Detects instances of real-world entities within an image (JPEG or PNG) provided as input. This includes objects like flower, tree, and table; events like wedding, graduation, and birthday party; and concepts like landscape, evening, and nature.</p>
26/// <p>For an example, see Analyzing images stored in an Amazon S3 bucket in the Amazon Rekognition Developer Guide.</p>
27/// <p>You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file.</p>
28/// <p><b>Optional Parameters</b></p>
29/// <p>You can specify one or both of the <code>GENERAL_LABELS</code> and <code>IMAGE_PROPERTIES</code> feature types when calling the DetectLabels API. Including <code>GENERAL_LABELS</code> will ensure the response includes the labels detected in the input image, while including <code>IMAGE_PROPERTIES </code>will ensure the response includes information about the image quality and color.</p>
30/// <p>When using <code>GENERAL_LABELS</code> and/or <code>IMAGE_PROPERTIES</code> you can provide filtering criteria to the Settings parameter. You can filter with sets of individual labels or with label categories. You can specify inclusive filters, exclusive filters, or a combination of inclusive and exclusive filters. For more information on filtering see <a href="https://docs.aws.amazon.com/rekognition/latest/dg/labels-detect-labels-image.html">Detecting Labels in an Image</a>.</p>
31/// <p>When getting labels, you can specify <code>MinConfidence</code> to control the confidence threshold for the labels returned. The default is 55%. You can also add the <code>MaxLabels</code> parameter to limit the number of labels returned. The default and upper limit is 1000 labels. These arguments are only valid when supplying GENERAL_LABELS as a feature type.</p>
32/// <p><b>Response Elements</b></p>
33/// <p>For each object, scene, and concept the API returns one or more labels. The API returns the following types of information about labels:</p>
34/// <ul>
35/// <li>
36/// <p>Name - The name of the detected label.</p></li>
37/// <li>
38/// <p>Confidence - The level of confidence in the label assigned to a detected object.</p></li>
39/// <li>
40/// <p>Parents - The ancestor labels for a detected label. DetectLabels returns a hierarchical taxonomy of detected labels. For example, a detected car might be assigned the label car. The label car has two parent labels: Vehicle (its parent) and Transportation (its grandparent). The response includes the all ancestors for a label, where every ancestor is a unique label. In the previous example, Car, Vehicle, and Transportation are returned as unique labels in the response.</p></li>
41/// <li>
42/// <p>Aliases - Possible Aliases for the label.</p></li>
43/// <li>
44/// <p>Categories - The label categories that the detected label belongs to.</p></li>
45/// <li>
46/// <p>BoundingBox — Bounding boxes are described for all instances of detected common object labels, returned in an array of Instance objects. An Instance object contains a BoundingBox object, describing the location of the label on the input image. It also includes the confidence for the accuracy of the detected bounding box.</p></li>
47/// </ul>
48/// <p>The API returns the following information regarding the image, as part of the ImageProperties structure:</p>
49/// <ul>
50/// <li>
51/// <p>Quality - Information about the Sharpness, Brightness, and Contrast of the input image, scored between 0 to 100. Image quality is returned for the entire image, as well as the background and the foreground.</p></li>
52/// <li>
53/// <p>Dominant Color - An array of the dominant colors in the image.</p></li>
54/// <li>
55/// <p>Foreground - Information about the sharpness, brightness, and dominant colors of the input image’s foreground.</p></li>
56/// <li>
57/// <p>Background - Information about the sharpness, brightness, and dominant colors of the input image’s background.</p></li>
58/// </ul>
59/// <p>The list of returned labels will include at least one label for every detected object, along with information about that label. In the following example, suppose the input image has a lighthouse, the sea, and a rock. The response includes all three labels, one for each object, as well as the confidence in the label:</p>
60/// <p><code>{Name: lighthouse, Confidence: 98.4629}</code></p>
61/// <p><code>{Name: rock,Confidence: 79.2097}</code></p>
62/// <p><code> {Name: sea,Confidence: 75.061}</code></p>
63/// <p>The list of labels can include multiple labels for the same object. For example, if the input image shows a flower (for example, a tulip), the operation might return the following three labels.</p>
64/// <p><code>{Name: flower,Confidence: 99.0562}</code></p>
65/// <p><code>{Name: plant,Confidence: 99.0562}</code></p>
66/// <p><code>{Name: tulip,Confidence: 99.0562}</code></p>
67/// <p>In this example, the detection algorithm more precisely identifies the flower as a tulip.</p><note>
68/// <p>If the object detected is a person, the operation doesn't provide the same facial details that the <code>DetectFaces</code> operation provides.</p>
69/// </note>
70/// <p>This is a stateless API operation that doesn't return any data.</p>
71/// <p>This operation requires permissions to perform the <code>rekognition:DetectLabels</code> action.</p>
72#[derive(::std::clone::Clone, ::std::fmt::Debug)]
73pub struct DetectLabelsFluentBuilder {
74 handle: ::std::sync::Arc<crate::client::Handle>,
75 inner: crate::operation::detect_labels::builders::DetectLabelsInputBuilder,
76 config_override: ::std::option::Option<crate::config::Builder>,
77}
78impl
79 crate::client::customize::internal::CustomizableSend<
80 crate::operation::detect_labels::DetectLabelsOutput,
81 crate::operation::detect_labels::DetectLabelsError,
82 > for DetectLabelsFluentBuilder
83{
84 fn send(
85 self,
86 config_override: crate::config::Builder,
87 ) -> crate::client::customize::internal::BoxFuture<
88 crate::client::customize::internal::SendResult<
89 crate::operation::detect_labels::DetectLabelsOutput,
90 crate::operation::detect_labels::DetectLabelsError,
91 >,
92 > {
93 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
94 }
95}
96impl DetectLabelsFluentBuilder {
97 /// Creates a new `DetectLabelsFluentBuilder`.
98 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
99 Self {
100 handle,
101 inner: ::std::default::Default::default(),
102 config_override: ::std::option::Option::None,
103 }
104 }
105 /// Access the DetectLabels as a reference.
106 pub fn as_input(&self) -> &crate::operation::detect_labels::builders::DetectLabelsInputBuilder {
107 &self.inner
108 }
109 /// Sends the request and returns the response.
110 ///
111 /// If an error occurs, an `SdkError` will be returned with additional details that
112 /// can be matched against.
113 ///
114 /// By default, any retryable failures will be retried twice. Retry behavior
115 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
116 /// set when configuring the client.
117 pub async fn send(
118 self,
119 ) -> ::std::result::Result<
120 crate::operation::detect_labels::DetectLabelsOutput,
121 ::aws_smithy_runtime_api::client::result::SdkError<
122 crate::operation::detect_labels::DetectLabelsError,
123 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
124 >,
125 > {
126 let input = self
127 .inner
128 .build()
129 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
130 let runtime_plugins = crate::operation::detect_labels::DetectLabels::operation_runtime_plugins(
131 self.handle.runtime_plugins.clone(),
132 &self.handle.conf,
133 self.config_override,
134 );
135 crate::operation::detect_labels::DetectLabels::orchestrate(&runtime_plugins, input).await
136 }
137
138 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
139 pub fn customize(
140 self,
141 ) -> crate::client::customize::CustomizableOperation<
142 crate::operation::detect_labels::DetectLabelsOutput,
143 crate::operation::detect_labels::DetectLabelsError,
144 Self,
145 > {
146 crate::client::customize::CustomizableOperation::new(self)
147 }
148 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
149 self.set_config_override(::std::option::Option::Some(config_override.into()));
150 self
151 }
152
153 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
154 self.config_override = config_override;
155 self
156 }
157 /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. Images stored in an S3 Bucket do not need to be base64-encoded.</p>
158 /// <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
159 pub fn image(mut self, input: crate::types::Image) -> Self {
160 self.inner = self.inner.image(input);
161 self
162 }
163 /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. Images stored in an S3 Bucket do not need to be base64-encoded.</p>
164 /// <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
165 pub fn set_image(mut self, input: ::std::option::Option<crate::types::Image>) -> Self {
166 self.inner = self.inner.set_image(input);
167 self
168 }
169 /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. Images stored in an S3 Bucket do not need to be base64-encoded.</p>
170 /// <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
171 pub fn get_image(&self) -> &::std::option::Option<crate::types::Image> {
172 self.inner.get_image()
173 }
174 /// <p>Maximum number of labels you want the service to return in the response. The service returns the specified number of highest confidence labels. Only valid when GENERAL_LABELS is specified as a feature type in the Feature input parameter.</p>
175 pub fn max_labels(mut self, input: i32) -> Self {
176 self.inner = self.inner.max_labels(input);
177 self
178 }
179 /// <p>Maximum number of labels you want the service to return in the response. The service returns the specified number of highest confidence labels. Only valid when GENERAL_LABELS is specified as a feature type in the Feature input parameter.</p>
180 pub fn set_max_labels(mut self, input: ::std::option::Option<i32>) -> Self {
181 self.inner = self.inner.set_max_labels(input);
182 self
183 }
184 /// <p>Maximum number of labels you want the service to return in the response. The service returns the specified number of highest confidence labels. Only valid when GENERAL_LABELS is specified as a feature type in the Feature input parameter.</p>
185 pub fn get_max_labels(&self) -> &::std::option::Option<i32> {
186 self.inner.get_max_labels()
187 }
188 /// <p>Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return any labels with confidence lower than this specified value.</p>
189 /// <p>If <code>MinConfidence</code> is not specified, the operation returns labels with a confidence values greater than or equal to 55 percent. Only valid when GENERAL_LABELS is specified as a feature type in the Feature input parameter.</p>
190 pub fn min_confidence(mut self, input: f32) -> Self {
191 self.inner = self.inner.min_confidence(input);
192 self
193 }
194 /// <p>Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return any labels with confidence lower than this specified value.</p>
195 /// <p>If <code>MinConfidence</code> is not specified, the operation returns labels with a confidence values greater than or equal to 55 percent. Only valid when GENERAL_LABELS is specified as a feature type in the Feature input parameter.</p>
196 pub fn set_min_confidence(mut self, input: ::std::option::Option<f32>) -> Self {
197 self.inner = self.inner.set_min_confidence(input);
198 self
199 }
200 /// <p>Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return any labels with confidence lower than this specified value.</p>
201 /// <p>If <code>MinConfidence</code> is not specified, the operation returns labels with a confidence values greater than or equal to 55 percent. Only valid when GENERAL_LABELS is specified as a feature type in the Feature input parameter.</p>
202 pub fn get_min_confidence(&self) -> &::std::option::Option<f32> {
203 self.inner.get_min_confidence()
204 }
205 ///
206 /// Appends an item to `Features`.
207 ///
208 /// To override the contents of this collection use [`set_features`](Self::set_features).
209 ///
210 /// <p>A list of the types of analysis to perform. Specifying GENERAL_LABELS uses the label detection feature, while specifying IMAGE_PROPERTIES returns information regarding image color and quality. If no option is specified GENERAL_LABELS is used by default.</p>
211 pub fn features(mut self, input: crate::types::DetectLabelsFeatureName) -> Self {
212 self.inner = self.inner.features(input);
213 self
214 }
215 /// <p>A list of the types of analysis to perform. Specifying GENERAL_LABELS uses the label detection feature, while specifying IMAGE_PROPERTIES returns information regarding image color and quality. If no option is specified GENERAL_LABELS is used by default.</p>
216 pub fn set_features(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::DetectLabelsFeatureName>>) -> Self {
217 self.inner = self.inner.set_features(input);
218 self
219 }
220 /// <p>A list of the types of analysis to perform. Specifying GENERAL_LABELS uses the label detection feature, while specifying IMAGE_PROPERTIES returns information regarding image color and quality. If no option is specified GENERAL_LABELS is used by default.</p>
221 pub fn get_features(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::DetectLabelsFeatureName>> {
222 self.inner.get_features()
223 }
224 /// <p>A list of the filters to be applied to returned detected labels and image properties. Specified filters can be inclusive, exclusive, or a combination of both. Filters can be used for individual labels or label categories. The exact label names or label categories must be supplied. For a full list of labels and label categories, see <a href="https://docs.aws.amazon.com/rekognition/latest/dg/labels.html">Detecting labels</a>.</p>
225 pub fn settings(mut self, input: crate::types::DetectLabelsSettings) -> Self {
226 self.inner = self.inner.settings(input);
227 self
228 }
229 /// <p>A list of the filters to be applied to returned detected labels and image properties. Specified filters can be inclusive, exclusive, or a combination of both. Filters can be used for individual labels or label categories. The exact label names or label categories must be supplied. For a full list of labels and label categories, see <a href="https://docs.aws.amazon.com/rekognition/latest/dg/labels.html">Detecting labels</a>.</p>
230 pub fn set_settings(mut self, input: ::std::option::Option<crate::types::DetectLabelsSettings>) -> Self {
231 self.inner = self.inner.set_settings(input);
232 self
233 }
234 /// <p>A list of the filters to be applied to returned detected labels and image properties. Specified filters can be inclusive, exclusive, or a combination of both. Filters can be used for individual labels or label categories. The exact label names or label categories must be supplied. For a full list of labels and label categories, see <a href="https://docs.aws.amazon.com/rekognition/latest/dg/labels.html">Detecting labels</a>.</p>
235 pub fn get_settings(&self) -> &::std::option::Option<crate::types::DetectLabelsSettings> {
236 self.inner.get_settings()
237 }
238}