1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::detect_faces::_detect_faces_output::DetectFacesOutputBuilder;

pub use crate::operation::detect_faces::_detect_faces_input::DetectFacesInputBuilder;

impl crate::operation::detect_faces::builders::DetectFacesInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::detect_faces::DetectFacesOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::detect_faces::DetectFacesError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.detect_faces();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `DetectFaces`.
///
/// <p>Detects faces within an image that is provided as input.</p>
/// <p><code>DetectFaces</code> detects the 100 largest faces in the image. For each face detected, the operation returns face details. These details include a bounding box of the face, a confidence value (that the bounding box contains a face), and a fixed set of attributes such as facial landmarks (for example, coordinates of eye and mouth), pose, presence of facial occlusion, and so on.</p>
/// <p>The face-detection algorithm is most effective on frontal faces. For non-frontal or obscured faces, the algorithm might not detect the faces or might detect faces with lower confidence.</p>
/// <p>You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file.</p><note>
/// <p>This is a stateless API operation. That is, the operation does not persist any data.</p>
/// </note>
/// <p>This operation requires permissions to perform the <code>rekognition:DetectFaces</code> action.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct DetectFacesFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::detect_faces::builders::DetectFacesInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::detect_faces::DetectFacesOutput,
        crate::operation::detect_faces::DetectFacesError,
    > for DetectFacesFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::detect_faces::DetectFacesOutput,
            crate::operation::detect_faces::DetectFacesError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl DetectFacesFluentBuilder {
    /// Creates a new `DetectFacesFluentBuilder`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the DetectFaces as a reference.
    pub fn as_input(&self) -> &crate::operation::detect_faces::builders::DetectFacesInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::detect_faces::DetectFacesOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::detect_faces::DetectFacesError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::detect_faces::DetectFaces::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::detect_faces::DetectFaces::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::detect_faces::DetectFacesOutput,
        crate::operation::detect_faces::DetectFacesError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
        self.set_config_override(::std::option::Option::Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.</p>
    /// <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    pub fn image(mut self, input: crate::types::Image) -> Self {
        self.inner = self.inner.image(input);
        self
    }
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.</p>
    /// <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    pub fn set_image(mut self, input: ::std::option::Option<crate::types::Image>) -> Self {
        self.inner = self.inner.set_image(input);
        self
    }
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.</p>
    /// <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    pub fn get_image(&self) -> &::std::option::Option<crate::types::Image> {
        self.inner.get_image()
    }
    ///
    /// Appends an item to `Attributes`.
    ///
    /// To override the contents of this collection use [`set_attributes`](Self::set_attributes).
    ///
    /// <p>An array of facial attributes you want to be returned. A DEFAULT subset of facial attributes - BoundingBox, Confidence, Pose, Quality, and Landmarks - will always be returned. You can request for specific facial attributes (in addition to the default list) - by using \["DEFAULT", "FACE_OCCLUDED"\] or just \["FACE_OCCLUDED"\]. You can request for all facial attributes by using \["ALL"\]. Requesting more attributes may increase response time.</p>
    /// <p>If you provide both, <code>\["ALL", "DEFAULT"\]</code>, the service uses a logical "AND" operator to determine which attributes to return (in this case, all attributes).</p>
    /// <p>Note that while the FaceOccluded and EyeDirection attributes are supported when using <code>DetectFaces</code>, they aren't supported when analyzing videos with <code>StartFaceDetection</code> and <code>GetFaceDetection</code>.</p>
    pub fn attributes(mut self, input: crate::types::Attribute) -> Self {
        self.inner = self.inner.attributes(input);
        self
    }
    /// <p>An array of facial attributes you want to be returned. A DEFAULT subset of facial attributes - BoundingBox, Confidence, Pose, Quality, and Landmarks - will always be returned. You can request for specific facial attributes (in addition to the default list) - by using \["DEFAULT", "FACE_OCCLUDED"\] or just \["FACE_OCCLUDED"\]. You can request for all facial attributes by using \["ALL"\]. Requesting more attributes may increase response time.</p>
    /// <p>If you provide both, <code>\["ALL", "DEFAULT"\]</code>, the service uses a logical "AND" operator to determine which attributes to return (in this case, all attributes).</p>
    /// <p>Note that while the FaceOccluded and EyeDirection attributes are supported when using <code>DetectFaces</code>, they aren't supported when analyzing videos with <code>StartFaceDetection</code> and <code>GetFaceDetection</code>.</p>
    pub fn set_attributes(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Attribute>>) -> Self {
        self.inner = self.inner.set_attributes(input);
        self
    }
    /// <p>An array of facial attributes you want to be returned. A DEFAULT subset of facial attributes - BoundingBox, Confidence, Pose, Quality, and Landmarks - will always be returned. You can request for specific facial attributes (in addition to the default list) - by using \["DEFAULT", "FACE_OCCLUDED"\] or just \["FACE_OCCLUDED"\]. You can request for all facial attributes by using \["ALL"\]. Requesting more attributes may increase response time.</p>
    /// <p>If you provide both, <code>\["ALL", "DEFAULT"\]</code>, the service uses a logical "AND" operator to determine which attributes to return (in this case, all attributes).</p>
    /// <p>Note that while the FaceOccluded and EyeDirection attributes are supported when using <code>DetectFaces</code>, they aren't supported when analyzing videos with <code>StartFaceDetection</code> and <code>GetFaceDetection</code>.</p>
    pub fn get_attributes(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Attribute>> {
        self.inner.get_attributes()
    }
}