1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::fmt::Debug)]
pub struct CreateDatasetInput {
/// <p>The source files for the dataset. You can specify the ARN of an existing dataset or specify the Amazon S3 bucket location of an Amazon Sagemaker format manifest file. If you don't specify <code>datasetSource</code>, an empty dataset is created. To add labeled images to the dataset, You can use the console or call <code>UpdateDatasetEntries</code>.</p>
pub dataset_source: ::std::option::Option<crate::types::DatasetSource>,
/// <p>The type of the dataset. Specify <code>TRAIN</code> to create a training dataset. Specify <code>TEST</code> to create a test dataset.</p>
pub dataset_type: ::std::option::Option<crate::types::DatasetType>,
/// <p>The ARN of the Amazon Rekognition Custom Labels project to which you want to asssign the dataset.</p>
pub project_arn: ::std::option::Option<::std::string::String>,
/// <p>A set of tags (key-value pairs) that you want to attach to the dataset.</p>
pub tags: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
}
impl CreateDatasetInput {
/// <p>The source files for the dataset. You can specify the ARN of an existing dataset or specify the Amazon S3 bucket location of an Amazon Sagemaker format manifest file. If you don't specify <code>datasetSource</code>, an empty dataset is created. To add labeled images to the dataset, You can use the console or call <code>UpdateDatasetEntries</code>.</p>
pub fn dataset_source(&self) -> ::std::option::Option<&crate::types::DatasetSource> {
self.dataset_source.as_ref()
}
/// <p>The type of the dataset. Specify <code>TRAIN</code> to create a training dataset. Specify <code>TEST</code> to create a test dataset.</p>
pub fn dataset_type(&self) -> ::std::option::Option<&crate::types::DatasetType> {
self.dataset_type.as_ref()
}
/// <p>The ARN of the Amazon Rekognition Custom Labels project to which you want to asssign the dataset.</p>
pub fn project_arn(&self) -> ::std::option::Option<&str> {
self.project_arn.as_deref()
}
/// <p>A set of tags (key-value pairs) that you want to attach to the dataset.</p>
pub fn tags(&self) -> ::std::option::Option<&::std::collections::HashMap<::std::string::String, ::std::string::String>> {
self.tags.as_ref()
}
}
impl CreateDatasetInput {
/// Creates a new builder-style object to manufacture [`CreateDatasetInput`](crate::operation::create_dataset::CreateDatasetInput).
pub fn builder() -> crate::operation::create_dataset::builders::CreateDatasetInputBuilder {
crate::operation::create_dataset::builders::CreateDatasetInputBuilder::default()
}
}
/// A builder for [`CreateDatasetInput`](crate::operation::create_dataset::CreateDatasetInput).
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default, ::std::fmt::Debug)]
pub struct CreateDatasetInputBuilder {
pub(crate) dataset_source: ::std::option::Option<crate::types::DatasetSource>,
pub(crate) dataset_type: ::std::option::Option<crate::types::DatasetType>,
pub(crate) project_arn: ::std::option::Option<::std::string::String>,
pub(crate) tags: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
}
impl CreateDatasetInputBuilder {
/// <p>The source files for the dataset. You can specify the ARN of an existing dataset or specify the Amazon S3 bucket location of an Amazon Sagemaker format manifest file. If you don't specify <code>datasetSource</code>, an empty dataset is created. To add labeled images to the dataset, You can use the console or call <code>UpdateDatasetEntries</code>.</p>
pub fn dataset_source(mut self, input: crate::types::DatasetSource) -> Self {
self.dataset_source = ::std::option::Option::Some(input);
self
}
/// <p>The source files for the dataset. You can specify the ARN of an existing dataset or specify the Amazon S3 bucket location of an Amazon Sagemaker format manifest file. If you don't specify <code>datasetSource</code>, an empty dataset is created. To add labeled images to the dataset, You can use the console or call <code>UpdateDatasetEntries</code>.</p>
pub fn set_dataset_source(mut self, input: ::std::option::Option<crate::types::DatasetSource>) -> Self {
self.dataset_source = input;
self
}
/// <p>The source files for the dataset. You can specify the ARN of an existing dataset or specify the Amazon S3 bucket location of an Amazon Sagemaker format manifest file. If you don't specify <code>datasetSource</code>, an empty dataset is created. To add labeled images to the dataset, You can use the console or call <code>UpdateDatasetEntries</code>.</p>
pub fn get_dataset_source(&self) -> &::std::option::Option<crate::types::DatasetSource> {
&self.dataset_source
}
/// <p>The type of the dataset. Specify <code>TRAIN</code> to create a training dataset. Specify <code>TEST</code> to create a test dataset.</p>
/// This field is required.
pub fn dataset_type(mut self, input: crate::types::DatasetType) -> Self {
self.dataset_type = ::std::option::Option::Some(input);
self
}
/// <p>The type of the dataset. Specify <code>TRAIN</code> to create a training dataset. Specify <code>TEST</code> to create a test dataset.</p>
pub fn set_dataset_type(mut self, input: ::std::option::Option<crate::types::DatasetType>) -> Self {
self.dataset_type = input;
self
}
/// <p>The type of the dataset. Specify <code>TRAIN</code> to create a training dataset. Specify <code>TEST</code> to create a test dataset.</p>
pub fn get_dataset_type(&self) -> &::std::option::Option<crate::types::DatasetType> {
&self.dataset_type
}
/// <p>The ARN of the Amazon Rekognition Custom Labels project to which you want to asssign the dataset.</p>
/// This field is required.
pub fn project_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.project_arn = ::std::option::Option::Some(input.into());
self
}
/// <p>The ARN of the Amazon Rekognition Custom Labels project to which you want to asssign the dataset.</p>
pub fn set_project_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.project_arn = input;
self
}
/// <p>The ARN of the Amazon Rekognition Custom Labels project to which you want to asssign the dataset.</p>
pub fn get_project_arn(&self) -> &::std::option::Option<::std::string::String> {
&self.project_arn
}
/// Adds a key-value pair to `tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>A set of tags (key-value pairs) that you want to attach to the dataset.</p>
pub fn tags(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
let mut hash_map = self.tags.unwrap_or_default();
hash_map.insert(k.into(), v.into());
self.tags = ::std::option::Option::Some(hash_map);
self
}
/// <p>A set of tags (key-value pairs) that you want to attach to the dataset.</p>
pub fn set_tags(mut self, input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>) -> Self {
self.tags = input;
self
}
/// <p>A set of tags (key-value pairs) that you want to attach to the dataset.</p>
pub fn get_tags(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
&self.tags
}
/// Consumes the builder and constructs a [`CreateDatasetInput`](crate::operation::create_dataset::CreateDatasetInput).
pub fn build(
self,
) -> ::std::result::Result<crate::operation::create_dataset::CreateDatasetInput, ::aws_smithy_types::error::operation::BuildError> {
::std::result::Result::Ok(crate::operation::create_dataset::CreateDatasetInput {
dataset_source: self.dataset_source,
dataset_type: self.dataset_type,
project_arn: self.project_arn,
tags: self.tags,
})
}
}