1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::start_project_version::_start_project_version_output::StartProjectVersionOutputBuilder;

pub use crate::operation::start_project_version::_start_project_version_input::StartProjectVersionInputBuilder;

impl StartProjectVersionInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::start_project_version::StartProjectVersionOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::start_project_version::StartProjectVersionError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.start_project_version();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `StartProjectVersion`.
///
/// <note>
/// <p>This operation applies only to Amazon Rekognition Custom Labels.</p>
/// </note>
/// <p>Starts the running of the version of a model. Starting a model takes a while to complete. To check the current state of the model, use <code>DescribeProjectVersions</code>. </p>
/// <p>Once the model is running, you can detect custom labels in new images by calling <code>DetectCustomLabels</code>.</p> <note>
/// <p>You are charged for the amount of time that the model is running. To stop a running model, call <code>StopProjectVersion</code>.</p>
/// </note>
/// <p>This operation requires permissions to perform the <code>rekognition:StartProjectVersion</code> action.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct StartProjectVersionFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::start_project_version::builders::StartProjectVersionInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::start_project_version::StartProjectVersionOutput,
        crate::operation::start_project_version::StartProjectVersionError,
    > for StartProjectVersionFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::start_project_version::StartProjectVersionOutput,
            crate::operation::start_project_version::StartProjectVersionError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl StartProjectVersionFluentBuilder {
    /// Creates a new `StartProjectVersion`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the StartProjectVersion as a reference.
    pub fn as_input(&self) -> &crate::operation::start_project_version::builders::StartProjectVersionInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::start_project_version::StartProjectVersionOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::start_project_version::StartProjectVersionError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::start_project_version::StartProjectVersion::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::start_project_version::StartProjectVersion::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::start_project_version::StartProjectVersionOutput,
        crate::operation::start_project_version::StartProjectVersionError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>The Amazon Resource Name(ARN) of the model version that you want to start.</p>
    pub fn project_version_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.project_version_arn(input.into());
        self
    }
    /// <p>The Amazon Resource Name(ARN) of the model version that you want to start.</p>
    pub fn set_project_version_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_project_version_arn(input);
        self
    }
    /// <p>The Amazon Resource Name(ARN) of the model version that you want to start.</p>
    pub fn get_project_version_arn(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_project_version_arn()
    }
    /// <p>The minimum number of inference units to use. A single inference unit represents 1 hour of processing. </p>
    /// <p>Use a higher number to increase the TPS throughput of your model. You are charged for the number of inference units that you use. </p>
    pub fn min_inference_units(mut self, input: i32) -> Self {
        self.inner = self.inner.min_inference_units(input);
        self
    }
    /// <p>The minimum number of inference units to use. A single inference unit represents 1 hour of processing. </p>
    /// <p>Use a higher number to increase the TPS throughput of your model. You are charged for the number of inference units that you use. </p>
    pub fn set_min_inference_units(mut self, input: ::std::option::Option<i32>) -> Self {
        self.inner = self.inner.set_min_inference_units(input);
        self
    }
    /// <p>The minimum number of inference units to use. A single inference unit represents 1 hour of processing. </p>
    /// <p>Use a higher number to increase the TPS throughput of your model. You are charged for the number of inference units that you use. </p>
    pub fn get_min_inference_units(&self) -> &::std::option::Option<i32> {
        self.inner.get_min_inference_units()
    }
    /// <p>The maximum number of inference units to use for auto-scaling the model. If you don't specify a value, Amazon Rekognition Custom Labels doesn't auto-scale the model.</p>
    pub fn max_inference_units(mut self, input: i32) -> Self {
        self.inner = self.inner.max_inference_units(input);
        self
    }
    /// <p>The maximum number of inference units to use for auto-scaling the model. If you don't specify a value, Amazon Rekognition Custom Labels doesn't auto-scale the model.</p>
    pub fn set_max_inference_units(mut self, input: ::std::option::Option<i32>) -> Self {
        self.inner = self.inner.set_max_inference_units(input);
        self
    }
    /// <p>The maximum number of inference units to use for auto-scaling the model. If you don't specify a value, Amazon Rekognition Custom Labels doesn't auto-scale the model.</p>
    pub fn get_max_inference_units(&self) -> &::std::option::Option<i32> {
        self.inner.get_max_inference_units()
    }
}