1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_project_version::_create_project_version_output::CreateProjectVersionOutputBuilder;

pub use crate::operation::create_project_version::_create_project_version_input::CreateProjectVersionInputBuilder;

impl CreateProjectVersionInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::create_project_version::CreateProjectVersionOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_project_version::CreateProjectVersionError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.create_project_version();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `CreateProjectVersion`.
///
/// <p>Creates a new version of Amazon Rekognition project (like a Custom Labels model or a custom adapter) and begins training. Models and adapters are managed as part of a Rekognition project. The response from <code>CreateProjectVersion</code> is an Amazon Resource Name (ARN) for the project version. </p>
/// <p>The FeatureConfig operation argument allows you to configure specific model or adapter settings. You can provide a description to the project version by using the VersionDescription argment. Training can take a while to complete. You can get the current status by calling <code>DescribeProjectVersions</code>. Training completed successfully if the value of the <code>Status</code> field is <code>TRAINING_COMPLETED</code>. Once training has successfully completed, call <code>DescribeProjectVersions</code> to get the training results and evaluate the model.</p>
/// <p>This operation requires permissions to perform the <code>rekognition:CreateProjectVersion</code> action.</p> <note>
/// <p> <i>The following applies only to projects with Amazon Rekognition Custom Labels as the chosen feature:</i> </p>
/// <p>You can train a model in a project that doesn't have associated datasets by specifying manifest files in the <code>TrainingData</code> and <code>TestingData</code> fields. </p>
/// <p>If you open the console after training a model with manifest files, Amazon Rekognition Custom Labels creates the datasets for you using the most recent manifest files. You can no longer train a model version for the project by specifying manifest files. </p>
/// <p>Instead of training with a project without associated datasets, we recommend that you use the manifest files to create training and test datasets for the project.</p>
/// </note>
/// <p></p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateProjectVersionFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_project_version::builders::CreateProjectVersionInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::create_project_version::CreateProjectVersionOutput,
        crate::operation::create_project_version::CreateProjectVersionError,
    > for CreateProjectVersionFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::create_project_version::CreateProjectVersionOutput,
            crate::operation::create_project_version::CreateProjectVersionError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl CreateProjectVersionFluentBuilder {
    /// Creates a new `CreateProjectVersion`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the CreateProjectVersion as a reference.
    pub fn as_input(&self) -> &crate::operation::create_project_version::builders::CreateProjectVersionInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::create_project_version::CreateProjectVersionOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_project_version::CreateProjectVersionError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::create_project_version::CreateProjectVersion::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::create_project_version::CreateProjectVersion::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::create_project_version::CreateProjectVersionOutput,
        crate::operation::create_project_version::CreateProjectVersionError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>The ARN of the Amazon Rekognition project that will manage the project version you want to train.</p>
    pub fn project_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.project_arn(input.into());
        self
    }
    /// <p>The ARN of the Amazon Rekognition project that will manage the project version you want to train.</p>
    pub fn set_project_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_project_arn(input);
        self
    }
    /// <p>The ARN of the Amazon Rekognition project that will manage the project version you want to train.</p>
    pub fn get_project_arn(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_project_arn()
    }
    /// <p>A name for the version of the project version. This value must be unique.</p>
    pub fn version_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.version_name(input.into());
        self
    }
    /// <p>A name for the version of the project version. This value must be unique.</p>
    pub fn set_version_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_version_name(input);
        self
    }
    /// <p>A name for the version of the project version. This value must be unique.</p>
    pub fn get_version_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_version_name()
    }
    /// <p>The Amazon S3 bucket location to store the results of training. The bucket can be any S3 bucket in your AWS account. You need <code>s3:PutObject</code> permission on the bucket. </p>
    pub fn output_config(mut self, input: crate::types::OutputConfig) -> Self {
        self.inner = self.inner.output_config(input);
        self
    }
    /// <p>The Amazon S3 bucket location to store the results of training. The bucket can be any S3 bucket in your AWS account. You need <code>s3:PutObject</code> permission on the bucket. </p>
    pub fn set_output_config(mut self, input: ::std::option::Option<crate::types::OutputConfig>) -> Self {
        self.inner = self.inner.set_output_config(input);
        self
    }
    /// <p>The Amazon S3 bucket location to store the results of training. The bucket can be any S3 bucket in your AWS account. You need <code>s3:PutObject</code> permission on the bucket. </p>
    pub fn get_output_config(&self) -> &::std::option::Option<crate::types::OutputConfig> {
        self.inner.get_output_config()
    }
    /// <p>Specifies an external manifest that the services uses to train the project version. If you specify <code>TrainingData</code> you must also specify <code>TestingData</code>. The project must not have any associated datasets. </p>
    pub fn training_data(mut self, input: crate::types::TrainingData) -> Self {
        self.inner = self.inner.training_data(input);
        self
    }
    /// <p>Specifies an external manifest that the services uses to train the project version. If you specify <code>TrainingData</code> you must also specify <code>TestingData</code>. The project must not have any associated datasets. </p>
    pub fn set_training_data(mut self, input: ::std::option::Option<crate::types::TrainingData>) -> Self {
        self.inner = self.inner.set_training_data(input);
        self
    }
    /// <p>Specifies an external manifest that the services uses to train the project version. If you specify <code>TrainingData</code> you must also specify <code>TestingData</code>. The project must not have any associated datasets. </p>
    pub fn get_training_data(&self) -> &::std::option::Option<crate::types::TrainingData> {
        self.inner.get_training_data()
    }
    /// <p>Specifies an external manifest that the service uses to test the project version. If you specify <code>TestingData</code> you must also specify <code>TrainingData</code>. The project must not have any associated datasets.</p>
    pub fn testing_data(mut self, input: crate::types::TestingData) -> Self {
        self.inner = self.inner.testing_data(input);
        self
    }
    /// <p>Specifies an external manifest that the service uses to test the project version. If you specify <code>TestingData</code> you must also specify <code>TrainingData</code>. The project must not have any associated datasets.</p>
    pub fn set_testing_data(mut self, input: ::std::option::Option<crate::types::TestingData>) -> Self {
        self.inner = self.inner.set_testing_data(input);
        self
    }
    /// <p>Specifies an external manifest that the service uses to test the project version. If you specify <code>TestingData</code> you must also specify <code>TrainingData</code>. The project must not have any associated datasets.</p>
    pub fn get_testing_data(&self) -> &::std::option::Option<crate::types::TestingData> {
        self.inner.get_testing_data()
    }
    /// Adds a key-value pair to `Tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p> A set of tags (key-value pairs) that you want to attach to the project version. </p>
    pub fn tags(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.tags(k.into(), v.into());
        self
    }
    /// <p> A set of tags (key-value pairs) that you want to attach to the project version. </p>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>) -> Self {
        self.inner = self.inner.set_tags(input);
        self
    }
    /// <p> A set of tags (key-value pairs) that you want to attach to the project version. </p>
    pub fn get_tags(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
        self.inner.get_tags()
    }
    /// <p>The identifier for your AWS Key Management Service key (AWS KMS key). You can supply the Amazon Resource Name (ARN) of your KMS key, the ID of your KMS key, an alias for your KMS key, or an alias ARN. The key is used to encrypt training images, test images, and manifest files copied into the service for the project version. Your source images are unaffected. The key is also used to encrypt training results and manifest files written to the output Amazon S3 bucket (<code>OutputConfig</code>).</p>
    /// <p>If you choose to use your own KMS key, you need the following permissions on the KMS key.</p>
    /// <ul>
    /// <li> <p>kms:CreateGrant</p> </li>
    /// <li> <p>kms:DescribeKey</p> </li>
    /// <li> <p>kms:GenerateDataKey</p> </li>
    /// <li> <p>kms:Decrypt</p> </li>
    /// </ul>
    /// <p>If you don't specify a value for <code>KmsKeyId</code>, images copied into the service are encrypted using a key that AWS owns and manages.</p>
    pub fn kms_key_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.kms_key_id(input.into());
        self
    }
    /// <p>The identifier for your AWS Key Management Service key (AWS KMS key). You can supply the Amazon Resource Name (ARN) of your KMS key, the ID of your KMS key, an alias for your KMS key, or an alias ARN. The key is used to encrypt training images, test images, and manifest files copied into the service for the project version. Your source images are unaffected. The key is also used to encrypt training results and manifest files written to the output Amazon S3 bucket (<code>OutputConfig</code>).</p>
    /// <p>If you choose to use your own KMS key, you need the following permissions on the KMS key.</p>
    /// <ul>
    /// <li> <p>kms:CreateGrant</p> </li>
    /// <li> <p>kms:DescribeKey</p> </li>
    /// <li> <p>kms:GenerateDataKey</p> </li>
    /// <li> <p>kms:Decrypt</p> </li>
    /// </ul>
    /// <p>If you don't specify a value for <code>KmsKeyId</code>, images copied into the service are encrypted using a key that AWS owns and manages.</p>
    pub fn set_kms_key_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_kms_key_id(input);
        self
    }
    /// <p>The identifier for your AWS Key Management Service key (AWS KMS key). You can supply the Amazon Resource Name (ARN) of your KMS key, the ID of your KMS key, an alias for your KMS key, or an alias ARN. The key is used to encrypt training images, test images, and manifest files copied into the service for the project version. Your source images are unaffected. The key is also used to encrypt training results and manifest files written to the output Amazon S3 bucket (<code>OutputConfig</code>).</p>
    /// <p>If you choose to use your own KMS key, you need the following permissions on the KMS key.</p>
    /// <ul>
    /// <li> <p>kms:CreateGrant</p> </li>
    /// <li> <p>kms:DescribeKey</p> </li>
    /// <li> <p>kms:GenerateDataKey</p> </li>
    /// <li> <p>kms:Decrypt</p> </li>
    /// </ul>
    /// <p>If you don't specify a value for <code>KmsKeyId</code>, images copied into the service are encrypted using a key that AWS owns and manages.</p>
    pub fn get_kms_key_id(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_kms_key_id()
    }
    /// <p>A description applied to the project version being created.</p>
    pub fn version_description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.version_description(input.into());
        self
    }
    /// <p>A description applied to the project version being created.</p>
    pub fn set_version_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_version_description(input);
        self
    }
    /// <p>A description applied to the project version being created.</p>
    pub fn get_version_description(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_version_description()
    }
    /// <p>Feature-specific configuration of the training job. If the job configuration does not match the feature type associated with the project, an InvalidParameterException is returned.</p>
    pub fn feature_config(mut self, input: crate::types::CustomizationFeatureConfig) -> Self {
        self.inner = self.inner.feature_config(input);
        self
    }
    /// <p>Feature-specific configuration of the training job. If the job configuration does not match the feature type associated with the project, an InvalidParameterException is returned.</p>
    pub fn set_feature_config(mut self, input: ::std::option::Option<crate::types::CustomizationFeatureConfig>) -> Self {
        self.inner = self.inner.set_feature_config(input);
        self
    }
    /// <p>Feature-specific configuration of the training job. If the job configuration does not match the feature type associated with the project, an InvalidParameterException is returned.</p>
    pub fn get_feature_config(&self) -> &::std::option::Option<crate::types::CustomizationFeatureConfig> {
        self.inner.get_feature_config()
    }
}