1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::start_label_detection::_start_label_detection_output::StartLabelDetectionOutputBuilder;
pub use crate::operation::start_label_detection::_start_label_detection_input::StartLabelDetectionInputBuilder;
impl StartLabelDetectionInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::start_label_detection::StartLabelDetectionOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::start_label_detection::StartLabelDetectionError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.start_label_detection();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `StartLabelDetection`.
///
/// <p>Starts asynchronous detection of labels in a stored video.</p>
/// <p>Amazon Rekognition Video can detect labels in a video. Labels are instances of real-world entities. This includes objects like flower, tree, and table; events like wedding, graduation, and birthday party; concepts like landscape, evening, and nature; and activities like a person getting out of a car or a person skiing.</p>
/// <p>The video must be stored in an Amazon S3 bucket. Use <code>Video</code> to specify the bucket name and the filename of the video. <code>StartLabelDetection</code> returns a job identifier (<code>JobId</code>) which you use to get the results of the operation. When label detection is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>.</p>
/// <p>To get the results of the label detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <code>GetLabelDetection</code> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartLabelDetection</code>.</p>
/// <p> <i>Optional Parameters</i> </p>
/// <p> <code>StartLabelDetection</code> has the <code>GENERAL_LABELS</code> Feature applied by default. This feature allows you to provide filtering criteria to the <code>Settings</code> parameter. You can filter with sets of individual labels or with label categories. You can specify inclusive filters, exclusive filters, or a combination of inclusive and exclusive filters. For more information on filtering, see <a href="https://docs.aws.amazon.com/rekognition/latest/dg/labels-detecting-labels-video.html">Detecting labels in a video</a>.</p>
/// <p>You can specify <code>MinConfidence</code> to control the confidence threshold for the labels returned. The default is 50.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct StartLabelDetectionFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::start_label_detection::builders::StartLabelDetectionInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::start_label_detection::StartLabelDetectionOutput,
crate::operation::start_label_detection::StartLabelDetectionError,
> for StartLabelDetectionFluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::start_label_detection::StartLabelDetectionOutput,
crate::operation::start_label_detection::StartLabelDetectionError,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl StartLabelDetectionFluentBuilder {
/// Creates a new `StartLabelDetection`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the StartLabelDetection as a reference.
pub fn as_input(&self) -> &crate::operation::start_label_detection::builders::StartLabelDetectionInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::start_label_detection::StartLabelDetectionOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::start_label_detection::StartLabelDetectionError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::start_label_detection::StartLabelDetection::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::start_label_detection::StartLabelDetection::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::start_label_detection::StartLabelDetectionOutput,
crate::operation::start_label_detection::StartLabelDetectionError,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
self.set_config_override(Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>The video in which you want to detect labels. The video must be stored in an Amazon S3 bucket.</p>
pub fn video(mut self, input: crate::types::Video) -> Self {
self.inner = self.inner.video(input);
self
}
/// <p>The video in which you want to detect labels. The video must be stored in an Amazon S3 bucket.</p>
pub fn set_video(mut self, input: ::std::option::Option<crate::types::Video>) -> Self {
self.inner = self.inner.set_video(input);
self
}
/// <p>The video in which you want to detect labels. The video must be stored in an Amazon S3 bucket.</p>
pub fn get_video(&self) -> &::std::option::Option<crate::types::Video> {
self.inner.get_video()
}
/// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartLabelDetection</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
pub fn client_request_token(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.client_request_token(input.into());
self
}
/// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartLabelDetection</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
pub fn set_client_request_token(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_client_request_token(input);
self
}
/// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartLabelDetection</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
pub fn get_client_request_token(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_client_request_token()
}
/// <p>Specifies the minimum confidence that Amazon Rekognition Video must have in order to return a detected label. Confidence represents how certain Amazon Rekognition is that a label is correctly identified.0 is the lowest confidence. 100 is the highest confidence. Amazon Rekognition Video doesn't return any labels with a confidence level lower than this specified value.</p>
/// <p>If you don't specify <code>MinConfidence</code>, the operation returns labels and bounding boxes (if detected) with confidence values greater than or equal to 50 percent.</p>
pub fn min_confidence(mut self, input: f32) -> Self {
self.inner = self.inner.min_confidence(input);
self
}
/// <p>Specifies the minimum confidence that Amazon Rekognition Video must have in order to return a detected label. Confidence represents how certain Amazon Rekognition is that a label is correctly identified.0 is the lowest confidence. 100 is the highest confidence. Amazon Rekognition Video doesn't return any labels with a confidence level lower than this specified value.</p>
/// <p>If you don't specify <code>MinConfidence</code>, the operation returns labels and bounding boxes (if detected) with confidence values greater than or equal to 50 percent.</p>
pub fn set_min_confidence(mut self, input: ::std::option::Option<f32>) -> Self {
self.inner = self.inner.set_min_confidence(input);
self
}
/// <p>Specifies the minimum confidence that Amazon Rekognition Video must have in order to return a detected label. Confidence represents how certain Amazon Rekognition is that a label is correctly identified.0 is the lowest confidence. 100 is the highest confidence. Amazon Rekognition Video doesn't return any labels with a confidence level lower than this specified value.</p>
/// <p>If you don't specify <code>MinConfidence</code>, the operation returns labels and bounding boxes (if detected) with confidence values greater than or equal to 50 percent.</p>
pub fn get_min_confidence(&self) -> &::std::option::Option<f32> {
self.inner.get_min_confidence()
}
/// <p>The Amazon SNS topic ARN you want Amazon Rekognition Video to publish the completion status of the label detection operation to. The Amazon SNS topic must have a topic name that begins with <i>AmazonRekognition</i> if you are using the AmazonRekognitionServiceRole permissions policy.</p>
pub fn notification_channel(mut self, input: crate::types::NotificationChannel) -> Self {
self.inner = self.inner.notification_channel(input);
self
}
/// <p>The Amazon SNS topic ARN you want Amazon Rekognition Video to publish the completion status of the label detection operation to. The Amazon SNS topic must have a topic name that begins with <i>AmazonRekognition</i> if you are using the AmazonRekognitionServiceRole permissions policy.</p>
pub fn set_notification_channel(mut self, input: ::std::option::Option<crate::types::NotificationChannel>) -> Self {
self.inner = self.inner.set_notification_channel(input);
self
}
/// <p>The Amazon SNS topic ARN you want Amazon Rekognition Video to publish the completion status of the label detection operation to. The Amazon SNS topic must have a topic name that begins with <i>AmazonRekognition</i> if you are using the AmazonRekognitionServiceRole permissions policy.</p>
pub fn get_notification_channel(&self) -> &::std::option::Option<crate::types::NotificationChannel> {
self.inner.get_notification_channel()
}
/// <p>An identifier you specify that's returned in the completion notification that's published to your Amazon Simple Notification Service topic. For example, you can use <code>JobTag</code> to group related jobs and identify them in the completion notification.</p>
pub fn job_tag(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.job_tag(input.into());
self
}
/// <p>An identifier you specify that's returned in the completion notification that's published to your Amazon Simple Notification Service topic. For example, you can use <code>JobTag</code> to group related jobs and identify them in the completion notification.</p>
pub fn set_job_tag(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_job_tag(input);
self
}
/// <p>An identifier you specify that's returned in the completion notification that's published to your Amazon Simple Notification Service topic. For example, you can use <code>JobTag</code> to group related jobs and identify them in the completion notification.</p>
pub fn get_job_tag(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_job_tag()
}
/// Appends an item to `Features`.
///
/// To override the contents of this collection use [`set_features`](Self::set_features).
///
/// <p>The features to return after video analysis. You can specify that GENERAL_LABELS are returned.</p>
pub fn features(mut self, input: crate::types::LabelDetectionFeatureName) -> Self {
self.inner = self.inner.features(input);
self
}
/// <p>The features to return after video analysis. You can specify that GENERAL_LABELS are returned.</p>
pub fn set_features(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::LabelDetectionFeatureName>>) -> Self {
self.inner = self.inner.set_features(input);
self
}
/// <p>The features to return after video analysis. You can specify that GENERAL_LABELS are returned.</p>
pub fn get_features(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::LabelDetectionFeatureName>> {
self.inner.get_features()
}
/// <p>The settings for a StartLabelDetection request.Contains the specified parameters for the label detection request of an asynchronous label analysis operation. Settings can include filters for GENERAL_LABELS.</p>
pub fn settings(mut self, input: crate::types::LabelDetectionSettings) -> Self {
self.inner = self.inner.settings(input);
self
}
/// <p>The settings for a StartLabelDetection request.Contains the specified parameters for the label detection request of an asynchronous label analysis operation. Settings can include filters for GENERAL_LABELS.</p>
pub fn set_settings(mut self, input: ::std::option::Option<crate::types::LabelDetectionSettings>) -> Self {
self.inner = self.inner.set_settings(input);
self
}
/// <p>The settings for a StartLabelDetection request.Contains the specified parameters for the label detection request of an asynchronous label analysis operation. Settings can include filters for GENERAL_LABELS.</p>
pub fn get_settings(&self) -> &::std::option::Option<crate::types::LabelDetectionSettings> {
self.inner.get_settings()
}
}