1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::start_face_detection::_start_face_detection_output::StartFaceDetectionOutputBuilder;

pub use crate::operation::start_face_detection::_start_face_detection_input::StartFaceDetectionInputBuilder;

impl StartFaceDetectionInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::start_face_detection::StartFaceDetectionOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::start_face_detection::StartFaceDetectionError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.start_face_detection();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `StartFaceDetection`.
///
/// <p>Starts asynchronous detection of faces in a stored video.</p>
/// <p>Amazon Rekognition Video can detect faces in a video stored in an Amazon S3 bucket. Use <code>Video</code> to specify the bucket name and the filename of the video. <code>StartFaceDetection</code> returns a job identifier (<code>JobId</code>) that you use to get the results of the operation. When face detection is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>. To get the results of the face detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <code>GetFaceDetection</code> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartFaceDetection</code>.</p>
/// <p>For more information, see Detecting faces in a stored video in the Amazon Rekognition Developer Guide.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct StartFaceDetectionFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::start_face_detection::builders::StartFaceDetectionInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::start_face_detection::StartFaceDetectionOutput,
        crate::operation::start_face_detection::StartFaceDetectionError,
    > for StartFaceDetectionFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::start_face_detection::StartFaceDetectionOutput,
            crate::operation::start_face_detection::StartFaceDetectionError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl StartFaceDetectionFluentBuilder {
    /// Creates a new `StartFaceDetection`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the StartFaceDetection as a reference.
    pub fn as_input(&self) -> &crate::operation::start_face_detection::builders::StartFaceDetectionInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::start_face_detection::StartFaceDetectionOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::start_face_detection::StartFaceDetectionError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::start_face_detection::StartFaceDetection::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::start_face_detection::StartFaceDetection::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::start_face_detection::StartFaceDetectionOutput,
        crate::operation::start_face_detection::StartFaceDetectionError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>The video in which you want to detect faces. The video must be stored in an Amazon S3 bucket.</p>
    pub fn video(mut self, input: crate::types::Video) -> Self {
        self.inner = self.inner.video(input);
        self
    }
    /// <p>The video in which you want to detect faces. The video must be stored in an Amazon S3 bucket.</p>
    pub fn set_video(mut self, input: ::std::option::Option<crate::types::Video>) -> Self {
        self.inner = self.inner.set_video(input);
        self
    }
    /// <p>The video in which you want to detect faces. The video must be stored in an Amazon S3 bucket.</p>
    pub fn get_video(&self) -> &::std::option::Option<crate::types::Video> {
        self.inner.get_video()
    }
    /// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartFaceDetection</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
    pub fn client_request_token(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.client_request_token(input.into());
        self
    }
    /// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartFaceDetection</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
    pub fn set_client_request_token(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_client_request_token(input);
        self
    }
    /// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartFaceDetection</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
    pub fn get_client_request_token(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_client_request_token()
    }
    /// <p>The ARN of the Amazon SNS topic to which you want Amazon Rekognition Video to publish the completion status of the face detection operation. The Amazon SNS topic must have a topic name that begins with <i>AmazonRekognition</i> if you are using the AmazonRekognitionServiceRole permissions policy.</p>
    pub fn notification_channel(mut self, input: crate::types::NotificationChannel) -> Self {
        self.inner = self.inner.notification_channel(input);
        self
    }
    /// <p>The ARN of the Amazon SNS topic to which you want Amazon Rekognition Video to publish the completion status of the face detection operation. The Amazon SNS topic must have a topic name that begins with <i>AmazonRekognition</i> if you are using the AmazonRekognitionServiceRole permissions policy.</p>
    pub fn set_notification_channel(mut self, input: ::std::option::Option<crate::types::NotificationChannel>) -> Self {
        self.inner = self.inner.set_notification_channel(input);
        self
    }
    /// <p>The ARN of the Amazon SNS topic to which you want Amazon Rekognition Video to publish the completion status of the face detection operation. The Amazon SNS topic must have a topic name that begins with <i>AmazonRekognition</i> if you are using the AmazonRekognitionServiceRole permissions policy.</p>
    pub fn get_notification_channel(&self) -> &::std::option::Option<crate::types::NotificationChannel> {
        self.inner.get_notification_channel()
    }
    /// <p>The face attributes you want returned.</p>
    /// <p> <code>DEFAULT</code> - The following subset of facial attributes are returned: BoundingBox, Confidence, Pose, Quality and Landmarks. </p>
    /// <p> <code>ALL</code> - All facial attributes are returned.</p>
    pub fn face_attributes(mut self, input: crate::types::FaceAttributes) -> Self {
        self.inner = self.inner.face_attributes(input);
        self
    }
    /// <p>The face attributes you want returned.</p>
    /// <p> <code>DEFAULT</code> - The following subset of facial attributes are returned: BoundingBox, Confidence, Pose, Quality and Landmarks. </p>
    /// <p> <code>ALL</code> - All facial attributes are returned.</p>
    pub fn set_face_attributes(mut self, input: ::std::option::Option<crate::types::FaceAttributes>) -> Self {
        self.inner = self.inner.set_face_attributes(input);
        self
    }
    /// <p>The face attributes you want returned.</p>
    /// <p> <code>DEFAULT</code> - The following subset of facial attributes are returned: BoundingBox, Confidence, Pose, Quality and Landmarks. </p>
    /// <p> <code>ALL</code> - All facial attributes are returned.</p>
    pub fn get_face_attributes(&self) -> &::std::option::Option<crate::types::FaceAttributes> {
        self.inner.get_face_attributes()
    }
    /// <p>An identifier you specify that's returned in the completion notification that's published to your Amazon Simple Notification Service topic. For example, you can use <code>JobTag</code> to group related jobs and identify them in the completion notification.</p>
    pub fn job_tag(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.job_tag(input.into());
        self
    }
    /// <p>An identifier you specify that's returned in the completion notification that's published to your Amazon Simple Notification Service topic. For example, you can use <code>JobTag</code> to group related jobs and identify them in the completion notification.</p>
    pub fn set_job_tag(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_job_tag(input);
        self
    }
    /// <p>An identifier you specify that's returned in the completion notification that's published to your Amazon Simple Notification Service topic. For example, you can use <code>JobTag</code> to group related jobs and identify them in the completion notification.</p>
    pub fn get_job_tag(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_job_tag()
    }
}