aws_sdk_personalize/operation/create_solution/
builders.rs

1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_solution::_create_solution_output::CreateSolutionOutputBuilder;
3
4pub use crate::operation::create_solution::_create_solution_input::CreateSolutionInputBuilder;
5
6impl crate::operation::create_solution::builders::CreateSolutionInputBuilder {
7    /// Sends a request with this input using the given client.
8    pub async fn send_with(
9        self,
10        client: &crate::Client,
11    ) -> ::std::result::Result<
12        crate::operation::create_solution::CreateSolutionOutput,
13        ::aws_smithy_runtime_api::client::result::SdkError<
14            crate::operation::create_solution::CreateSolutionError,
15            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16        >,
17    > {
18        let mut fluent_builder = client.create_solution();
19        fluent_builder.inner = self;
20        fluent_builder.send().await
21    }
22}
23/// Fluent builder constructing a request to `CreateSolution`.
24///
25/// <important>
26/// <p>By default, all new solutions use automatic training. With automatic training, you incur training costs while your solution is active. To avoid unnecessary costs, when you are finished you can <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_UpdateSolution.html">update the solution</a> to turn off automatic training. For information about training costs, see <a href="https://aws.amazon.com/personalize/pricing/">Amazon Personalize pricing</a>.</p>
27/// </important>
28/// <p>Creates the configuration for training a model (creating a solution version). This configuration includes the recipe to use for model training and optional training configuration, such as columns to use in training and feature transformation parameters. For more information about configuring a solution, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/customizing-solution-config.html">Creating and configuring a solution</a>.</p>
29/// <p>By default, new solutions use automatic training to create solution versions every 7 days. You can change the training frequency. Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/solution-config-auto-training.html">Configuring automatic training</a>.</p>
30/// <p>To turn off automatic training, set <code>performAutoTraining</code> to false. If you turn off automatic training, you must manually create a solution version by calling the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_CreateSolutionVersion.html">CreateSolutionVersion</a> operation.</p>
31/// <p>After training starts, you can get the solution version's Amazon Resource Name (ARN) with the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> API operation. To get its status, use the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a>.</p>
32/// <p>After training completes you can evaluate model accuracy by calling <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_GetSolutionMetrics.html">GetSolutionMetrics</a>. When you are satisfied with the solution version, you deploy it using <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_CreateCampaign.html">CreateCampaign</a>. The campaign provides recommendations to a client through the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_RS_GetRecommendations.html">GetRecommendations</a> API.</p><note>
33/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> for solution hyperparameter optimization at this time.</p>
34/// </note>
35/// <p><b>Status</b></p>
36/// <p>A solution can be in one of the following states:</p>
37/// <ul>
38/// <li>
39/// <p>CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED</p></li>
40/// <li>
41/// <p>DELETE PENDING &gt; DELETE IN_PROGRESS</p></li>
42/// </ul>
43/// <p>To get the status of the solution, call <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolution.html">DescribeSolution</a>. If you use manual training, the status must be ACTIVE before you call <code>CreateSolutionVersion</code>.</p>
44/// <p class="title"><b>Related APIs</b></p>
45/// <ul>
46/// <li>
47/// <p><a href="https://docs.aws.amazon.com/personalize/latest/dg/API_UpdateSolution.html">UpdateSolution</a></p></li>
48/// <li>
49/// <p><a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutions.html">ListSolutions</a></p></li>
50/// <li>
51/// <p><a href="https://docs.aws.amazon.com/personalize/latest/dg/API_CreateSolutionVersion.html">CreateSolutionVersion</a></p></li>
52/// <li>
53/// <p><a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolution.html">DescribeSolution</a></p></li>
54/// <li>
55/// <p><a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DeleteSolution.html">DeleteSolution</a></p></li>
56/// </ul>
57/// <ul>
58/// <li>
59/// <p><a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a></p></li>
60/// <li>
61/// <p><a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a></p></li>
62/// </ul>
63#[derive(::std::clone::Clone, ::std::fmt::Debug)]
64pub struct CreateSolutionFluentBuilder {
65    handle: ::std::sync::Arc<crate::client::Handle>,
66    inner: crate::operation::create_solution::builders::CreateSolutionInputBuilder,
67    config_override: ::std::option::Option<crate::config::Builder>,
68}
69impl
70    crate::client::customize::internal::CustomizableSend<
71        crate::operation::create_solution::CreateSolutionOutput,
72        crate::operation::create_solution::CreateSolutionError,
73    > for CreateSolutionFluentBuilder
74{
75    fn send(
76        self,
77        config_override: crate::config::Builder,
78    ) -> crate::client::customize::internal::BoxFuture<
79        crate::client::customize::internal::SendResult<
80            crate::operation::create_solution::CreateSolutionOutput,
81            crate::operation::create_solution::CreateSolutionError,
82        >,
83    > {
84        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
85    }
86}
87impl CreateSolutionFluentBuilder {
88    /// Creates a new `CreateSolutionFluentBuilder`.
89    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
90        Self {
91            handle,
92            inner: ::std::default::Default::default(),
93            config_override: ::std::option::Option::None,
94        }
95    }
96    /// Access the CreateSolution as a reference.
97    pub fn as_input(&self) -> &crate::operation::create_solution::builders::CreateSolutionInputBuilder {
98        &self.inner
99    }
100    /// Sends the request and returns the response.
101    ///
102    /// If an error occurs, an `SdkError` will be returned with additional details that
103    /// can be matched against.
104    ///
105    /// By default, any retryable failures will be retried twice. Retry behavior
106    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
107    /// set when configuring the client.
108    pub async fn send(
109        self,
110    ) -> ::std::result::Result<
111        crate::operation::create_solution::CreateSolutionOutput,
112        ::aws_smithy_runtime_api::client::result::SdkError<
113            crate::operation::create_solution::CreateSolutionError,
114            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
115        >,
116    > {
117        let input = self
118            .inner
119            .build()
120            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
121        let runtime_plugins = crate::operation::create_solution::CreateSolution::operation_runtime_plugins(
122            self.handle.runtime_plugins.clone(),
123            &self.handle.conf,
124            self.config_override,
125        );
126        crate::operation::create_solution::CreateSolution::orchestrate(&runtime_plugins, input).await
127    }
128
129    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
130    pub fn customize(
131        self,
132    ) -> crate::client::customize::CustomizableOperation<
133        crate::operation::create_solution::CreateSolutionOutput,
134        crate::operation::create_solution::CreateSolutionError,
135        Self,
136    > {
137        crate::client::customize::CustomizableOperation::new(self)
138    }
139    pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
140        self.set_config_override(::std::option::Option::Some(config_override.into()));
141        self
142    }
143
144    pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
145        self.config_override = config_override;
146        self
147    }
148    /// <p>The name for the solution.</p>
149    pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
150        self.inner = self.inner.name(input.into());
151        self
152    }
153    /// <p>The name for the solution.</p>
154    pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
155        self.inner = self.inner.set_name(input);
156        self
157    }
158    /// <p>The name for the solution.</p>
159    pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
160        self.inner.get_name()
161    }
162    /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
163    /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
164    pub fn perform_hpo(mut self, input: bool) -> Self {
165        self.inner = self.inner.perform_hpo(input);
166        self
167    }
168    /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
169    /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
170    pub fn set_perform_hpo(mut self, input: ::std::option::Option<bool>) -> Self {
171        self.inner = self.inner.set_perform_hpo(input);
172        self
173    }
174    /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
175    /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
176    pub fn get_perform_hpo(&self) -> &::std::option::Option<bool> {
177        self.inner.get_perform_hpo()
178    }
179    /// <important>
180    /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
181    /// </important>
182    /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
183    /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
184    pub fn perform_auto_ml(mut self, input: bool) -> Self {
185        self.inner = self.inner.perform_auto_ml(input);
186        self
187    }
188    /// <important>
189    /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
190    /// </important>
191    /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
192    /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
193    pub fn set_perform_auto_ml(mut self, input: ::std::option::Option<bool>) -> Self {
194        self.inner = self.inner.set_perform_auto_ml(input);
195        self
196    }
197    /// <important>
198    /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
199    /// </important>
200    /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
201    /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
202    pub fn get_perform_auto_ml(&self) -> &::std::option::Option<bool> {
203        self.inner.get_perform_auto_ml()
204    }
205    /// <p>Whether the solution uses automatic training to create new solution versions (trained models). The default is <code>True</code> and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a <code>schedulingExpression</code> in the <code>AutoTrainingConfig</code> as part of solution configuration. For more information about automatic training, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/solution-config-auto-training.html">Configuring automatic training</a>.</p>
206    /// <p>Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training.</p>
207    /// <p>After training starts, you can get the solution version's Amazon Resource Name (ARN) with the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> API operation. To get its status, use the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a>.</p>
208    pub fn perform_auto_training(mut self, input: bool) -> Self {
209        self.inner = self.inner.perform_auto_training(input);
210        self
211    }
212    /// <p>Whether the solution uses automatic training to create new solution versions (trained models). The default is <code>True</code> and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a <code>schedulingExpression</code> in the <code>AutoTrainingConfig</code> as part of solution configuration. For more information about automatic training, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/solution-config-auto-training.html">Configuring automatic training</a>.</p>
213    /// <p>Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training.</p>
214    /// <p>After training starts, you can get the solution version's Amazon Resource Name (ARN) with the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> API operation. To get its status, use the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a>.</p>
215    pub fn set_perform_auto_training(mut self, input: ::std::option::Option<bool>) -> Self {
216        self.inner = self.inner.set_perform_auto_training(input);
217        self
218    }
219    /// <p>Whether the solution uses automatic training to create new solution versions (trained models). The default is <code>True</code> and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a <code>schedulingExpression</code> in the <code>AutoTrainingConfig</code> as part of solution configuration. For more information about automatic training, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/solution-config-auto-training.html">Configuring automatic training</a>.</p>
220    /// <p>Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training.</p>
221    /// <p>After training starts, you can get the solution version's Amazon Resource Name (ARN) with the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> API operation. To get its status, use the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a>.</p>
222    pub fn get_perform_auto_training(&self) -> &::std::option::Option<bool> {
223        self.inner.get_perform_auto_training()
224    }
225    /// <p>The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when <code>performAutoML</code> is false. For information about different Amazon Personalize recipes and their ARNs, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
226    pub fn recipe_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
227        self.inner = self.inner.recipe_arn(input.into());
228        self
229    }
230    /// <p>The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when <code>performAutoML</code> is false. For information about different Amazon Personalize recipes and their ARNs, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
231    pub fn set_recipe_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
232        self.inner = self.inner.set_recipe_arn(input);
233        self
234    }
235    /// <p>The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when <code>performAutoML</code> is false. For information about different Amazon Personalize recipes and their ARNs, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
236    pub fn get_recipe_arn(&self) -> &::std::option::Option<::std::string::String> {
237        self.inner.get_recipe_arn()
238    }
239    /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
240    pub fn dataset_group_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
241        self.inner = self.inner.dataset_group_arn(input.into());
242        self
243    }
244    /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
245    pub fn set_dataset_group_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
246        self.inner = self.inner.set_dataset_group_arn(input);
247        self
248    }
249    /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
250    pub fn get_dataset_group_arn(&self) -> &::std::option::Option<::std::string::String> {
251        self.inner.get_dataset_group_arn()
252    }
253    /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
254    /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
255    pub fn event_type(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
256        self.inner = self.inner.event_type(input.into());
257        self
258    }
259    /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
260    /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
261    pub fn set_event_type(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
262        self.inner = self.inner.set_event_type(input);
263        self
264    }
265    /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
266    /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
267    pub fn get_event_type(&self) -> &::std::option::Option<::std::string::String> {
268        self.inner.get_event_type()
269    }
270    /// <p>The configuration properties for the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p><note>
271    /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
272    /// </note>
273    pub fn solution_config(mut self, input: crate::types::SolutionConfig) -> Self {
274        self.inner = self.inner.solution_config(input);
275        self
276    }
277    /// <p>The configuration properties for the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p><note>
278    /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
279    /// </note>
280    pub fn set_solution_config(mut self, input: ::std::option::Option<crate::types::SolutionConfig>) -> Self {
281        self.inner = self.inner.set_solution_config(input);
282        self
283    }
284    /// <p>The configuration properties for the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p><note>
285    /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
286    /// </note>
287    pub fn get_solution_config(&self) -> &::std::option::Option<crate::types::SolutionConfig> {
288        self.inner.get_solution_config()
289    }
290    ///
291    /// Appends an item to `tags`.
292    ///
293    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
294    ///
295    /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
296    pub fn tags(mut self, input: crate::types::Tag) -> Self {
297        self.inner = self.inner.tags(input);
298        self
299    }
300    /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
301    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
302        self.inner = self.inner.set_tags(input);
303        self
304    }
305    /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
306    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
307        self.inner.get_tags()
308    }
309}