aws_sdk_personalize/operation/create_solution/_create_solution_input.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2#[allow(missing_docs)] // documentation missing in model
3#[non_exhaustive]
4#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::fmt::Debug)]
5pub struct CreateSolutionInput {
6 /// <p>The name for the solution.</p>
7 pub name: ::std::option::Option<::std::string::String>,
8 /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
9 /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
10 pub perform_hpo: ::std::option::Option<bool>,
11 /// <important>
12 /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
13 /// </important>
14 /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
15 /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
16 pub perform_auto_ml: ::std::option::Option<bool>,
17 /// <p>Whether the solution uses automatic training to create new solution versions (trained models). The default is <code>True</code> and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a <code>schedulingExpression</code> in the <code>AutoTrainingConfig</code> as part of solution configuration. For more information about automatic training, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/solution-config-auto-training.html">Configuring automatic training</a>.</p>
18 /// <p>Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training.</p>
19 /// <p>After training starts, you can get the solution version's Amazon Resource Name (ARN) with the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> API operation. To get its status, use the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a>.</p>
20 pub perform_auto_training: ::std::option::Option<bool>,
21 /// <p>The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when <code>performAutoML</code> is false. For information about different Amazon Personalize recipes and their ARNs, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
22 pub recipe_arn: ::std::option::Option<::std::string::String>,
23 /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
24 pub dataset_group_arn: ::std::option::Option<::std::string::String>,
25 /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
26 /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
27 pub event_type: ::std::option::Option<::std::string::String>,
28 /// <p>The configuration properties for the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p><note>
29 /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
30 /// </note>
31 pub solution_config: ::std::option::Option<crate::types::SolutionConfig>,
32 /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
33 pub tags: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>,
34}
35impl CreateSolutionInput {
36 /// <p>The name for the solution.</p>
37 pub fn name(&self) -> ::std::option::Option<&str> {
38 self.name.as_deref()
39 }
40 /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
41 /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
42 pub fn perform_hpo(&self) -> ::std::option::Option<bool> {
43 self.perform_hpo
44 }
45 /// <important>
46 /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
47 /// </important>
48 /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
49 /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
50 pub fn perform_auto_ml(&self) -> ::std::option::Option<bool> {
51 self.perform_auto_ml
52 }
53 /// <p>Whether the solution uses automatic training to create new solution versions (trained models). The default is <code>True</code> and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a <code>schedulingExpression</code> in the <code>AutoTrainingConfig</code> as part of solution configuration. For more information about automatic training, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/solution-config-auto-training.html">Configuring automatic training</a>.</p>
54 /// <p>Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training.</p>
55 /// <p>After training starts, you can get the solution version's Amazon Resource Name (ARN) with the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> API operation. To get its status, use the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a>.</p>
56 pub fn perform_auto_training(&self) -> ::std::option::Option<bool> {
57 self.perform_auto_training
58 }
59 /// <p>The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when <code>performAutoML</code> is false. For information about different Amazon Personalize recipes and their ARNs, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
60 pub fn recipe_arn(&self) -> ::std::option::Option<&str> {
61 self.recipe_arn.as_deref()
62 }
63 /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
64 pub fn dataset_group_arn(&self) -> ::std::option::Option<&str> {
65 self.dataset_group_arn.as_deref()
66 }
67 /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
68 /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
69 pub fn event_type(&self) -> ::std::option::Option<&str> {
70 self.event_type.as_deref()
71 }
72 /// <p>The configuration properties for the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p><note>
73 /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
74 /// </note>
75 pub fn solution_config(&self) -> ::std::option::Option<&crate::types::SolutionConfig> {
76 self.solution_config.as_ref()
77 }
78 /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
79 ///
80 /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.tags.is_none()`.
81 pub fn tags(&self) -> &[crate::types::Tag] {
82 self.tags.as_deref().unwrap_or_default()
83 }
84}
85impl CreateSolutionInput {
86 /// Creates a new builder-style object to manufacture [`CreateSolutionInput`](crate::operation::create_solution::CreateSolutionInput).
87 pub fn builder() -> crate::operation::create_solution::builders::CreateSolutionInputBuilder {
88 crate::operation::create_solution::builders::CreateSolutionInputBuilder::default()
89 }
90}
91
92/// A builder for [`CreateSolutionInput`](crate::operation::create_solution::CreateSolutionInput).
93#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default, ::std::fmt::Debug)]
94#[non_exhaustive]
95pub struct CreateSolutionInputBuilder {
96 pub(crate) name: ::std::option::Option<::std::string::String>,
97 pub(crate) perform_hpo: ::std::option::Option<bool>,
98 pub(crate) perform_auto_ml: ::std::option::Option<bool>,
99 pub(crate) perform_auto_training: ::std::option::Option<bool>,
100 pub(crate) recipe_arn: ::std::option::Option<::std::string::String>,
101 pub(crate) dataset_group_arn: ::std::option::Option<::std::string::String>,
102 pub(crate) event_type: ::std::option::Option<::std::string::String>,
103 pub(crate) solution_config: ::std::option::Option<crate::types::SolutionConfig>,
104 pub(crate) tags: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>,
105}
106impl CreateSolutionInputBuilder {
107 /// <p>The name for the solution.</p>
108 /// This field is required.
109 pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
110 self.name = ::std::option::Option::Some(input.into());
111 self
112 }
113 /// <p>The name for the solution.</p>
114 pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
115 self.name = input;
116 self
117 }
118 /// <p>The name for the solution.</p>
119 pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
120 &self.name
121 }
122 /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
123 /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
124 pub fn perform_hpo(mut self, input: bool) -> Self {
125 self.perform_hpo = ::std::option::Option::Some(input);
126 self
127 }
128 /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
129 /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
130 pub fn set_perform_hpo(mut self, input: ::std::option::Option<bool>) -> Self {
131 self.perform_hpo = input;
132 self
133 }
134 /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
135 /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
136 pub fn get_perform_hpo(&self) -> &::std::option::Option<bool> {
137 &self.perform_hpo
138 }
139 /// <important>
140 /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
141 /// </important>
142 /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
143 /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
144 pub fn perform_auto_ml(mut self, input: bool) -> Self {
145 self.perform_auto_ml = ::std::option::Option::Some(input);
146 self
147 }
148 /// <important>
149 /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
150 /// </important>
151 /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
152 /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
153 pub fn set_perform_auto_ml(mut self, input: ::std::option::Option<bool>) -> Self {
154 self.perform_auto_ml = input;
155 self
156 }
157 /// <important>
158 /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
159 /// </important>
160 /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
161 /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
162 pub fn get_perform_auto_ml(&self) -> &::std::option::Option<bool> {
163 &self.perform_auto_ml
164 }
165 /// <p>Whether the solution uses automatic training to create new solution versions (trained models). The default is <code>True</code> and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a <code>schedulingExpression</code> in the <code>AutoTrainingConfig</code> as part of solution configuration. For more information about automatic training, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/solution-config-auto-training.html">Configuring automatic training</a>.</p>
166 /// <p>Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training.</p>
167 /// <p>After training starts, you can get the solution version's Amazon Resource Name (ARN) with the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> API operation. To get its status, use the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a>.</p>
168 pub fn perform_auto_training(mut self, input: bool) -> Self {
169 self.perform_auto_training = ::std::option::Option::Some(input);
170 self
171 }
172 /// <p>Whether the solution uses automatic training to create new solution versions (trained models). The default is <code>True</code> and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a <code>schedulingExpression</code> in the <code>AutoTrainingConfig</code> as part of solution configuration. For more information about automatic training, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/solution-config-auto-training.html">Configuring automatic training</a>.</p>
173 /// <p>Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training.</p>
174 /// <p>After training starts, you can get the solution version's Amazon Resource Name (ARN) with the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> API operation. To get its status, use the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a>.</p>
175 pub fn set_perform_auto_training(mut self, input: ::std::option::Option<bool>) -> Self {
176 self.perform_auto_training = input;
177 self
178 }
179 /// <p>Whether the solution uses automatic training to create new solution versions (trained models). The default is <code>True</code> and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a <code>schedulingExpression</code> in the <code>AutoTrainingConfig</code> as part of solution configuration. For more information about automatic training, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/solution-config-auto-training.html">Configuring automatic training</a>.</p>
180 /// <p>Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training.</p>
181 /// <p>After training starts, you can get the solution version's Amazon Resource Name (ARN) with the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> API operation. To get its status, use the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a>.</p>
182 pub fn get_perform_auto_training(&self) -> &::std::option::Option<bool> {
183 &self.perform_auto_training
184 }
185 /// <p>The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when <code>performAutoML</code> is false. For information about different Amazon Personalize recipes and their ARNs, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
186 pub fn recipe_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
187 self.recipe_arn = ::std::option::Option::Some(input.into());
188 self
189 }
190 /// <p>The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when <code>performAutoML</code> is false. For information about different Amazon Personalize recipes and their ARNs, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
191 pub fn set_recipe_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
192 self.recipe_arn = input;
193 self
194 }
195 /// <p>The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when <code>performAutoML</code> is false. For information about different Amazon Personalize recipes and their ARNs, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/working-with-predefined-recipes.html">Choosing a recipe</a>.</p>
196 pub fn get_recipe_arn(&self) -> &::std::option::Option<::std::string::String> {
197 &self.recipe_arn
198 }
199 /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
200 /// This field is required.
201 pub fn dataset_group_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
202 self.dataset_group_arn = ::std::option::Option::Some(input.into());
203 self
204 }
205 /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
206 pub fn set_dataset_group_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
207 self.dataset_group_arn = input;
208 self
209 }
210 /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
211 pub fn get_dataset_group_arn(&self) -> &::std::option::Option<::std::string::String> {
212 &self.dataset_group_arn
213 }
214 /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
215 /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
216 pub fn event_type(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
217 self.event_type = ::std::option::Option::Some(input.into());
218 self
219 }
220 /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
221 /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
222 pub fn set_event_type(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
223 self.event_type = input;
224 self
225 }
226 /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
227 /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
228 pub fn get_event_type(&self) -> &::std::option::Option<::std::string::String> {
229 &self.event_type
230 }
231 /// <p>The configuration properties for the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p><note>
232 /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
233 /// </note>
234 pub fn solution_config(mut self, input: crate::types::SolutionConfig) -> Self {
235 self.solution_config = ::std::option::Option::Some(input);
236 self
237 }
238 /// <p>The configuration properties for the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p><note>
239 /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
240 /// </note>
241 pub fn set_solution_config(mut self, input: ::std::option::Option<crate::types::SolutionConfig>) -> Self {
242 self.solution_config = input;
243 self
244 }
245 /// <p>The configuration properties for the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p><note>
246 /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
247 /// </note>
248 pub fn get_solution_config(&self) -> &::std::option::Option<crate::types::SolutionConfig> {
249 &self.solution_config
250 }
251 /// Appends an item to `tags`.
252 ///
253 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
254 ///
255 /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
256 pub fn tags(mut self, input: crate::types::Tag) -> Self {
257 let mut v = self.tags.unwrap_or_default();
258 v.push(input);
259 self.tags = ::std::option::Option::Some(v);
260 self
261 }
262 /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
263 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
264 self.tags = input;
265 self
266 }
267 /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
268 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
269 &self.tags
270 }
271 /// Consumes the builder and constructs a [`CreateSolutionInput`](crate::operation::create_solution::CreateSolutionInput).
272 pub fn build(
273 self,
274 ) -> ::std::result::Result<crate::operation::create_solution::CreateSolutionInput, ::aws_smithy_types::error::operation::BuildError> {
275 ::std::result::Result::Ok(crate::operation::create_solution::CreateSolutionInput {
276 name: self.name,
277 perform_hpo: self.perform_hpo,
278 perform_auto_ml: self.perform_auto_ml,
279 perform_auto_training: self.perform_auto_training,
280 recipe_arn: self.recipe_arn,
281 dataset_group_arn: self.dataset_group_arn,
282 event_type: self.event_type,
283 solution_config: self.solution_config,
284 tags: self.tags,
285 })
286 }
287}