1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_solution::_create_solution_output::CreateSolutionOutputBuilder;

pub use crate::operation::create_solution::_create_solution_input::CreateSolutionInputBuilder;

impl CreateSolutionInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::create_solution::CreateSolutionOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_solution::CreateSolutionError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.create_solution();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `CreateSolution`.
///
/// <p>Creates the configuration for training a model. A trained model is known as a solution version. After the configuration is created, you train the model (create a solution version) by calling the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_CreateSolutionVersion.html">CreateSolutionVersion</a> operation. Every time you call <code>CreateSolutionVersion</code>, a new version of the solution is created.</p>
/// <p>After creating a solution version, you check its accuracy by calling <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_GetSolutionMetrics.html">GetSolutionMetrics</a>. When you are satisfied with the version, you deploy it using <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_CreateCampaign.html">CreateCampaign</a>. The campaign provides recommendations to a client through the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_RS_GetRecommendations.html">GetRecommendations</a> API.</p>
/// <p>To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize. </p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> for solution hyperparameter optimization at this time.</p>
/// </note>
/// <p> <b>Status</b> </p>
/// <p>A solution can be in one of the following states:</p>
/// <ul>
/// <li> <p>CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED</p> </li>
/// <li> <p>DELETE PENDING &gt; DELETE IN_PROGRESS</p> </li>
/// </ul>
/// <p>To get the status of the solution, call <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolution.html">DescribeSolution</a>. Wait until the status shows as ACTIVE before calling <code>CreateSolutionVersion</code>.</p>
/// <p class="title"> <b>Related APIs</b> </p>
/// <ul>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutions.html">ListSolutions</a> </p> </li>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_CreateSolutionVersion.html">CreateSolutionVersion</a> </p> </li>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolution.html">DescribeSolution</a> </p> </li>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DeleteSolution.html">DeleteSolution</a> </p> </li>
/// </ul>
/// <ul>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> </p> </li>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a> </p> </li>
/// </ul>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateSolutionFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_solution::builders::CreateSolutionInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::create_solution::CreateSolutionOutput,
        crate::operation::create_solution::CreateSolutionError,
    > for CreateSolutionFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::create_solution::CreateSolutionOutput,
            crate::operation::create_solution::CreateSolutionError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl CreateSolutionFluentBuilder {
    /// Creates a new `CreateSolution`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the CreateSolution as a reference.
    pub fn as_input(&self) -> &crate::operation::create_solution::builders::CreateSolutionInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::create_solution::CreateSolutionOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_solution::CreateSolutionError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::create_solution::CreateSolution::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::create_solution::CreateSolution::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::create_solution::CreateSolutionOutput,
        crate::operation::create_solution::CreateSolutionError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>The name for the solution.</p>
    pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.name(input.into());
        self
    }
    /// <p>The name for the solution.</p>
    pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_name(input);
        self
    }
    /// <p>The name for the solution.</p>
    pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_name()
    }
    /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
    /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
    pub fn perform_hpo(mut self, input: bool) -> Self {
        self.inner = self.inner.perform_hpo(input);
        self
    }
    /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
    /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
    pub fn set_perform_hpo(mut self, input: ::std::option::Option<bool>) -> Self {
        self.inner = self.inner.set_perform_hpo(input);
        self
    }
    /// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
    /// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
    pub fn get_perform_hpo(&self) -> &::std::option::Option<bool> {
        self.inner.get_perform_hpo()
    }
    /// <important>
    /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
    /// </important>
    /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
    /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
    pub fn perform_auto_ml(mut self, input: bool) -> Self {
        self.inner = self.inner.perform_auto_ml(input);
        self
    }
    /// <important>
    /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
    /// </important>
    /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
    /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
    pub fn set_perform_auto_ml(mut self, input: ::std::option::Option<bool>) -> Self {
        self.inner = self.inner.set_perform_auto_ml(input);
        self
    }
    /// <important>
    /// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
    /// </important>
    /// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
    /// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
    pub fn get_perform_auto_ml(&self) -> &::std::option::Option<bool> {
        self.inner.get_perform_auto_ml()
    }
    /// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
    pub fn recipe_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.recipe_arn(input.into());
        self
    }
    /// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
    pub fn set_recipe_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_recipe_arn(input);
        self
    }
    /// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
    pub fn get_recipe_arn(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_recipe_arn()
    }
    /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
    pub fn dataset_group_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.dataset_group_arn(input.into());
        self
    }
    /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
    pub fn set_dataset_group_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_dataset_group_arn(input);
        self
    }
    /// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
    pub fn get_dataset_group_arn(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_dataset_group_arn()
    }
    /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
    /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
    pub fn event_type(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.event_type(input.into());
        self
    }
    /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
    /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
    pub fn set_event_type(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_event_type(input);
        self
    }
    /// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
    /// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
    pub fn get_event_type(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_event_type()
    }
    /// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
    /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
    /// </note>
    pub fn solution_config(mut self, input: crate::types::SolutionConfig) -> Self {
        self.inner = self.inner.solution_config(input);
        self
    }
    /// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
    /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
    /// </note>
    pub fn set_solution_config(mut self, input: ::std::option::Option<crate::types::SolutionConfig>) -> Self {
        self.inner = self.inner.set_solution_config(input);
        self
    }
    /// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
    /// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
    /// </note>
    pub fn get_solution_config(&self) -> &::std::option::Option<crate::types::SolutionConfig> {
        self.inner.get_solution_config()
    }
    /// Appends an item to `tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
    pub fn tags(mut self, input: crate::types::Tag) -> Self {
        self.inner = self.inner.tags(input);
        self
    }
    /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
        self.inner = self.inner.set_tags(input);
        self
    }
    /// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
        self.inner.get_tags()
    }
}