1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_solution::_create_solution_output::CreateSolutionOutputBuilder;
pub use crate::operation::create_solution::_create_solution_input::CreateSolutionInputBuilder;
impl CreateSolutionInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::create_solution::CreateSolutionOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_solution::CreateSolutionError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.create_solution();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `CreateSolution`.
///
/// <p>Creates the configuration for training a model. A trained model is known as a solution version. After the configuration is created, you train the model (create a solution version) by calling the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_CreateSolutionVersion.html">CreateSolutionVersion</a> operation. Every time you call <code>CreateSolutionVersion</code>, a new version of the solution is created.</p>
/// <p>After creating a solution version, you check its accuracy by calling <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_GetSolutionMetrics.html">GetSolutionMetrics</a>. When you are satisfied with the version, you deploy it using <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_CreateCampaign.html">CreateCampaign</a>. The campaign provides recommendations to a client through the <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_RS_GetRecommendations.html">GetRecommendations</a> API.</p>
/// <p>To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize. </p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> for solution hyperparameter optimization at this time.</p>
/// </note>
/// <p> <b>Status</b> </p>
/// <p>A solution can be in one of the following states:</p>
/// <ul>
/// <li> <p>CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED</p> </li>
/// <li> <p>DELETE PENDING > DELETE IN_PROGRESS</p> </li>
/// </ul>
/// <p>To get the status of the solution, call <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolution.html">DescribeSolution</a>. Wait until the status shows as ACTIVE before calling <code>CreateSolutionVersion</code>.</p>
/// <p class="title"> <b>Related APIs</b> </p>
/// <ul>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutions.html">ListSolutions</a> </p> </li>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_CreateSolutionVersion.html">CreateSolutionVersion</a> </p> </li>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolution.html">DescribeSolution</a> </p> </li>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DeleteSolution.html">DeleteSolution</a> </p> </li>
/// </ul>
/// <ul>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html">ListSolutionVersions</a> </p> </li>
/// <li> <p> <a href="https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html">DescribeSolutionVersion</a> </p> </li>
/// </ul>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateSolutionFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_solution::builders::CreateSolutionInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::create_solution::CreateSolutionOutput,
crate::operation::create_solution::CreateSolutionError,
> for CreateSolutionFluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::create_solution::CreateSolutionOutput,
crate::operation::create_solution::CreateSolutionError,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl CreateSolutionFluentBuilder {
/// Creates a new `CreateSolution`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the CreateSolution as a reference.
pub fn as_input(&self) -> &crate::operation::create_solution::builders::CreateSolutionInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::create_solution::CreateSolutionOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_solution::CreateSolutionError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::create_solution::CreateSolution::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::create_solution::CreateSolution::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::create_solution::CreateSolutionOutput,
crate::operation::create_solution::CreateSolutionError,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
self.set_config_override(Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>The name for the solution.</p>
pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.name(input.into());
self
}
/// <p>The name for the solution.</p>
pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_name(input);
self
}
/// <p>The name for the solution.</p>
pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_name()
}
/// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
/// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
pub fn perform_hpo(mut self, input: bool) -> Self {
self.inner = self.inner.perform_hpo(input);
self
}
/// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
/// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
pub fn set_perform_hpo(mut self, input: ::std::option::Option<bool>) -> Self {
self.inner = self.inner.set_perform_hpo(input);
self
}
/// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
/// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
pub fn get_perform_hpo(&self) -> &::std::option::Option<bool> {
self.inner.get_perform_hpo()
}
/// <important>
/// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
/// </important>
/// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
/// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
pub fn perform_auto_ml(mut self, input: bool) -> Self {
self.inner = self.inner.perform_auto_ml(input);
self
}
/// <important>
/// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
/// </important>
/// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
/// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
pub fn set_perform_auto_ml(mut self, input: ::std::option::Option<bool>) -> Self {
self.inner = self.inner.set_perform_auto_ml(input);
self
}
/// <important>
/// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
/// </important>
/// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
/// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
pub fn get_perform_auto_ml(&self) -> &::std::option::Option<bool> {
self.inner.get_perform_auto_ml()
}
/// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
pub fn recipe_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.recipe_arn(input.into());
self
}
/// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
pub fn set_recipe_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_recipe_arn(input);
self
}
/// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
pub fn get_recipe_arn(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_recipe_arn()
}
/// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
pub fn dataset_group_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.dataset_group_arn(input.into());
self
}
/// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
pub fn set_dataset_group_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_dataset_group_arn(input);
self
}
/// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
pub fn get_dataset_group_arn(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_dataset_group_arn()
}
/// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
/// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
pub fn event_type(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.event_type(input.into());
self
}
/// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
/// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
pub fn set_event_type(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_event_type(input);
self
}
/// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
/// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
pub fn get_event_type(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_event_type()
}
/// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
/// </note>
pub fn solution_config(mut self, input: crate::types::SolutionConfig) -> Self {
self.inner = self.inner.solution_config(input);
self
}
/// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
/// </note>
pub fn set_solution_config(mut self, input: ::std::option::Option<crate::types::SolutionConfig>) -> Self {
self.inner = self.inner.set_solution_config(input);
self
}
/// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
/// </note>
pub fn get_solution_config(&self) -> &::std::option::Option<crate::types::SolutionConfig> {
self.inner.get_solution_config()
}
/// Appends an item to `tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
self.inner = self.inner.tags(input);
self
}
/// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
self.inner = self.inner.set_tags(input);
self
}
/// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
self.inner.get_tags()
}
}