1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::fmt::Debug)]
pub struct CreateSolutionInput {
/// <p>The name for the solution.</p>
pub name: ::std::option::Option<::std::string::String>,
/// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
/// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
pub perform_hpo: ::std::option::Option<bool>,
/// <important>
/// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
/// </important>
/// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
/// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
pub perform_auto_ml: ::std::option::Option<bool>,
/// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
pub recipe_arn: ::std::option::Option<::std::string::String>,
/// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
pub dataset_group_arn: ::std::option::Option<::std::string::String>,
/// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
/// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
pub event_type: ::std::option::Option<::std::string::String>,
/// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
/// </note>
pub solution_config: ::std::option::Option<crate::types::SolutionConfig>,
/// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
pub tags: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>,
}
impl CreateSolutionInput {
/// <p>The name for the solution.</p>
pub fn name(&self) -> ::std::option::Option<&str> {
self.name.as_deref()
}
/// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
/// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
pub fn perform_hpo(&self) -> ::std::option::Option<bool> {
self.perform_hpo
}
/// <important>
/// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
/// </important>
/// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
/// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
pub fn perform_auto_ml(&self) -> ::std::option::Option<bool> {
self.perform_auto_ml
}
/// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
pub fn recipe_arn(&self) -> ::std::option::Option<&str> {
self.recipe_arn.as_deref()
}
/// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
pub fn dataset_group_arn(&self) -> ::std::option::Option<&str> {
self.dataset_group_arn.as_deref()
}
/// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
/// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
pub fn event_type(&self) -> ::std::option::Option<&str> {
self.event_type.as_deref()
}
/// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
/// </note>
pub fn solution_config(&self) -> ::std::option::Option<&crate::types::SolutionConfig> {
self.solution_config.as_ref()
}
/// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
///
/// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.tags.is_none()`.
pub fn tags(&self) -> &[crate::types::Tag] {
self.tags.as_deref().unwrap_or_default()
}
}
impl CreateSolutionInput {
/// Creates a new builder-style object to manufacture [`CreateSolutionInput`](crate::operation::create_solution::CreateSolutionInput).
pub fn builder() -> crate::operation::create_solution::builders::CreateSolutionInputBuilder {
crate::operation::create_solution::builders::CreateSolutionInputBuilder::default()
}
}
/// A builder for [`CreateSolutionInput`](crate::operation::create_solution::CreateSolutionInput).
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default, ::std::fmt::Debug)]
pub struct CreateSolutionInputBuilder {
pub(crate) name: ::std::option::Option<::std::string::String>,
pub(crate) perform_hpo: ::std::option::Option<bool>,
pub(crate) perform_auto_ml: ::std::option::Option<bool>,
pub(crate) recipe_arn: ::std::option::Option<::std::string::String>,
pub(crate) dataset_group_arn: ::std::option::Option<::std::string::String>,
pub(crate) event_type: ::std::option::Option<::std::string::String>,
pub(crate) solution_config: ::std::option::Option<crate::types::SolutionConfig>,
pub(crate) tags: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>,
}
impl CreateSolutionInputBuilder {
/// <p>The name for the solution.</p>
/// This field is required.
pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.name = ::std::option::Option::Some(input.into());
self
}
/// <p>The name for the solution.</p>
pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.name = input;
self
}
/// <p>The name for the solution.</p>
pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
&self.name
}
/// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
/// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
pub fn perform_hpo(mut self, input: bool) -> Self {
self.perform_hpo = ::std::option::Option::Some(input);
self
}
/// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
/// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
pub fn set_perform_hpo(mut self, input: ::std::option::Option<bool>) -> Self {
self.perform_hpo = input;
self
}
/// <p>Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is <code>false</code>.</p>
/// <p>When performing AutoML, this parameter is always <code>true</code> and you should not set it to <code>false</code>.</p>
pub fn get_perform_hpo(&self) -> &::std::option::Option<bool> {
&self.perform_hpo
}
/// <important>
/// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
/// </important>
/// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
/// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
pub fn perform_auto_ml(mut self, input: bool) -> Self {
self.perform_auto_ml = ::std::option::Option::Some(input);
self
}
/// <important>
/// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
/// </important>
/// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
/// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
pub fn set_perform_auto_ml(mut self, input: ::std::option::Option<bool>) -> Self {
self.perform_auto_ml = input;
self
}
/// <important>
/// <p>We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see <a href="https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html">Determining your use case.</a> </p>
/// </important>
/// <p>Whether to perform automated machine learning (AutoML). The default is <code>false</code>. For this case, you must specify <code>recipeArn</code>.</p>
/// <p>When set to <code>true</code>, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit <code>recipeArn</code>. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.</p>
pub fn get_perform_auto_ml(&self) -> &::std::option::Option<bool> {
&self.perform_auto_ml
}
/// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
pub fn recipe_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.recipe_arn = ::std::option::Option::Some(input.into());
self
}
/// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
pub fn set_recipe_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.recipe_arn = input;
self
}
/// <p>The ARN of the recipe to use for model training. This is required when <code>performAutoML</code> is false.</p>
pub fn get_recipe_arn(&self) -> &::std::option::Option<::std::string::String> {
&self.recipe_arn
}
/// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
/// This field is required.
pub fn dataset_group_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.dataset_group_arn = ::std::option::Option::Some(input.into());
self
}
/// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
pub fn set_dataset_group_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.dataset_group_arn = input;
self
}
/// <p>The Amazon Resource Name (ARN) of the dataset group that provides the training data.</p>
pub fn get_dataset_group_arn(&self) -> &::std::option::Option<::std::string::String> {
&self.dataset_group_arn
}
/// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
/// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
pub fn event_type(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.event_type = ::std::option::Option::Some(input.into());
self
}
/// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
/// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
pub fn set_event_type(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.event_type = input;
self
}
/// <p>When your have multiple event types (using an <code>EVENT_TYPE</code> schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model.</p>
/// <p>If you do not provide an <code>eventType</code>, Amazon Personalize will use all interactions for training with equal weight regardless of type.</p>
pub fn get_event_type(&self) -> &::std::option::Option<::std::string::String> {
&self.event_type
}
/// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
/// </note>
pub fn solution_config(mut self, input: crate::types::SolutionConfig) -> Self {
self.solution_config = ::std::option::Option::Some(input);
self
}
/// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
/// </note>
pub fn set_solution_config(mut self, input: ::std::option::Option<crate::types::SolutionConfig>) -> Self {
self.solution_config = input;
self
}
/// <p>The configuration to use with the solution. When <code>performAutoML</code> is set to true, Amazon Personalize only evaluates the <code>autoMLConfig</code> section of the solution configuration.</p> <note>
/// <p>Amazon Personalize doesn't support configuring the <code>hpoObjective</code> at this time.</p>
/// </note>
pub fn get_solution_config(&self) -> &::std::option::Option<crate::types::SolutionConfig> {
&self.solution_config
}
/// Appends an item to `tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
let mut v = self.tags.unwrap_or_default();
v.push(input);
self.tags = ::std::option::Option::Some(v);
self
}
/// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
self.tags = input;
self
}
/// <p>A list of <a href="https://docs.aws.amazon.com/personalize/latest/dg/tagging-resources.html">tags</a> to apply to the solution.</p>
pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
&self.tags
}
/// Consumes the builder and constructs a [`CreateSolutionInput`](crate::operation::create_solution::CreateSolutionInput).
pub fn build(
self,
) -> ::std::result::Result<crate::operation::create_solution::CreateSolutionInput, ::aws_smithy_types::error::operation::BuildError> {
::std::result::Result::Ok(crate::operation::create_solution::CreateSolutionInput {
name: self.name,
perform_hpo: self.perform_hpo,
perform_auto_ml: self.perform_auto_ml,
recipe_arn: self.recipe_arn,
dataset_group_arn: self.dataset_group_arn,
event_type: self.event_type,
solution_config: self.solution_config,
tags: self.tags,
})
}
}