aws_sdk_paymentcryptography/
lib.rs

1#![allow(deprecated)]
2#![allow(unknown_lints)]
3#![allow(clippy::module_inception)]
4#![allow(clippy::upper_case_acronyms)]
5#![allow(clippy::large_enum_variant)]
6#![allow(clippy::wrong_self_convention)]
7#![allow(clippy::should_implement_trait)]
8#![allow(clippy::disallowed_names)]
9#![allow(clippy::vec_init_then_push)]
10#![allow(clippy::type_complexity)]
11#![allow(clippy::needless_return)]
12#![allow(clippy::derive_partial_eq_without_eq)]
13#![allow(clippy::result_large_err)]
14#![allow(clippy::unnecessary_map_on_constructor)]
15#![allow(rustdoc::bare_urls)]
16#![allow(rustdoc::redundant_explicit_links)]
17#![allow(rustdoc::invalid_html_tags)]
18#![forbid(unsafe_code)]
19#![warn(missing_docs)]
20#![cfg_attr(docsrs, feature(doc_auto_cfg))]
21//! Amazon Web Services Payment Cryptography Control Plane APIs manage encryption keys for use during payment-related cryptographic operations. You can create, import, export, share, manage, and delete keys. You can also manage Identity and Access Management (IAM) policies for keys. For more information, see [Identity and access management](https://docs.aws.amazon.com/payment-cryptography/latest/userguide/security-iam.html) in the _Amazon Web Services Payment Cryptography User Guide._
22//!
23//! To use encryption keys for payment-related transaction processing and associated cryptographic operations, you use the [Amazon Web Services Payment Cryptography Data Plane](https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/Welcome.html). You can perform actions like encrypt, decrypt, generate, and verify payment-related data.
24//!
25//! All Amazon Web Services Payment Cryptography API calls must be signed and transmitted using Transport Layer Security (TLS). We recommend you always use the latest supported TLS version for logging API requests.
26//!
27//! Amazon Web Services Payment Cryptography supports CloudTrail for control plane operations, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket you specify. By using the information collected by CloudTrail, you can determine what requests were made to Amazon Web Services Payment Cryptography, who made the request, when it was made, and so on. If you don't configure a trail, you can still view the most recent events in the CloudTrail console. For more information, see the [CloudTrail User Guide](https://docs.aws.amazon.com/awscloudtrail/latest/userguide/).
28//!
29//! ## Getting Started
30//!
31//! > Examples are available for many services and operations, check out the
32//! > [examples folder in GitHub](https://github.com/awslabs/aws-sdk-rust/tree/main/examples).
33//!
34//! The SDK provides one crate per AWS service. You must add [Tokio](https://crates.io/crates/tokio)
35//! as a dependency within your Rust project to execute asynchronous code. To add `aws-sdk-paymentcryptography` to
36//! your project, add the following to your **Cargo.toml** file:
37//!
38//! ```toml
39//! [dependencies]
40//! aws-config = { version = "1.1.7", features = ["behavior-version-latest"] }
41//! aws-sdk-paymentcryptography = "1.80.0"
42//! tokio = { version = "1", features = ["full"] }
43//! ```
44//!
45//! Then in code, a client can be created with the following:
46//!
47//! ```rust,no_run
48//! use aws_sdk_paymentcryptography as paymentcryptography;
49//!
50//! #[::tokio::main]
51//! async fn main() -> Result<(), paymentcryptography::Error> {
52//!     let config = aws_config::load_from_env().await;
53//!     let client = aws_sdk_paymentcryptography::Client::new(&config);
54//!
55//!     // ... make some calls with the client
56//!
57//!     Ok(())
58//! }
59//! ```
60//!
61//! See the [client documentation](https://docs.rs/aws-sdk-paymentcryptography/latest/aws_sdk_paymentcryptography/client/struct.Client.html)
62//! for information on what calls can be made, and the inputs and outputs for each of those calls.
63//!
64//! ## Using the SDK
65//!
66//! Until the SDK is released, we will be adding information about using the SDK to the
67//! [Developer Guide](https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html). Feel free to suggest
68//! additional sections for the guide by opening an issue and describing what you are trying to do.
69//!
70//! ## Getting Help
71//!
72//! * [GitHub discussions](https://github.com/awslabs/aws-sdk-rust/discussions) - For ideas, RFCs & general questions
73//! * [GitHub issues](https://github.com/awslabs/aws-sdk-rust/issues/new/choose) - For bug reports & feature requests
74//! * [Generated Docs (latest version)](https://awslabs.github.io/aws-sdk-rust/)
75//! * [Usage examples](https://github.com/awslabs/aws-sdk-rust/tree/main/examples)
76//!
77//!
78//! # Crate Organization
79//!
80//! The entry point for most customers will be [`Client`], which exposes one method for each API
81//! offered by Payment Cryptography Control Plane. The return value of each of these methods is a "fluent builder",
82//! where the different inputs for that API are added by builder-style function call chaining,
83//! followed by calling `send()` to get a [`Future`](std::future::Future) that will result in
84//! either a successful output or a [`SdkError`](crate::error::SdkError).
85//!
86//! Some of these API inputs may be structs or enums to provide more complex structured information.
87//! These structs and enums live in [`types`](crate::types). There are some simpler types for
88//! representing data such as date times or binary blobs that live in [`primitives`](crate::primitives).
89//!
90//! All types required to configure a client via the [`Config`](crate::Config) struct live
91//! in [`config`](crate::config).
92//!
93//! The [`operation`](crate::operation) module has a submodule for every API, and in each submodule
94//! is the input, output, and error type for that API, as well as builders to construct each of those.
95//!
96//! There is a top-level [`Error`](crate::Error) type that encompasses all the errors that the
97//! client can return. Any other error type can be converted to this `Error` type via the
98//! [`From`](std::convert::From) trait.
99//!
100//! The other modules within this crate are not required for normal usage.
101
102// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
103pub use error_meta::Error;
104
105#[doc(inline)]
106pub use config::Config;
107
108/// Client for calling Payment Cryptography Control Plane.
109/// ## Constructing a `Client`
110///
111/// A [`Config`] is required to construct a client. For most use cases, the [`aws-config`]
112/// crate should be used to automatically resolve this config using
113/// [`aws_config::load_from_env()`], since this will resolve an [`SdkConfig`] which can be shared
114/// across multiple different AWS SDK clients. This config resolution process can be customized
115/// by calling [`aws_config::from_env()`] instead, which returns a [`ConfigLoader`] that uses
116/// the [builder pattern] to customize the default config.
117///
118/// In the simplest case, creating a client looks as follows:
119/// ```rust,no_run
120/// # async fn wrapper() {
121/// let config = aws_config::load_from_env().await;
122/// let client = aws_sdk_paymentcryptography::Client::new(&config);
123/// # }
124/// ```
125///
126/// Occasionally, SDKs may have additional service-specific values that can be set on the [`Config`] that
127/// is absent from [`SdkConfig`], or slightly different settings for a specific client may be desired.
128/// The [`Builder`](crate::config::Builder) struct implements `From<&SdkConfig>`, so setting these specific settings can be
129/// done as follows:
130///
131/// ```rust,no_run
132/// # async fn wrapper() {
133/// let sdk_config = ::aws_config::load_from_env().await;
134/// let config = aws_sdk_paymentcryptography::config::Builder::from(&sdk_config)
135/// # /*
136///     .some_service_specific_setting("value")
137/// # */
138///     .build();
139/// # }
140/// ```
141///
142/// See the [`aws-config` docs] and [`Config`] for more information on customizing configuration.
143///
144/// _Note:_ Client construction is expensive due to connection thread pool initialization, and should
145/// be done once at application start-up.
146///
147/// [`Config`]: crate::Config
148/// [`ConfigLoader`]: https://docs.rs/aws-config/*/aws_config/struct.ConfigLoader.html
149/// [`SdkConfig`]: https://docs.rs/aws-config/*/aws_config/struct.SdkConfig.html
150/// [`aws-config` docs]: https://docs.rs/aws-config/*
151/// [`aws-config`]: https://crates.io/crates/aws-config
152/// [`aws_config::from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.from_env.html
153/// [`aws_config::load_from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.load_from_env.html
154/// [builder pattern]: https://rust-lang.github.io/api-guidelines/type-safety.html#builders-enable-construction-of-complex-values-c-builder
155/// # Using the `Client`
156///
157/// A client has a function for every operation that can be performed by the service.
158/// For example, the [`CreateAlias`](crate::operation::create_alias) operation has
159/// a [`Client::create_alias`], function which returns a builder for that operation.
160/// The fluent builder ultimately has a `send()` function that returns an async future that
161/// returns a result, as illustrated below:
162///
163/// ```rust,ignore
164/// let result = client.create_alias()
165///     .alias_name("example")
166///     .send()
167///     .await;
168/// ```
169///
170/// The underlying HTTP requests that get made by this can be modified with the `customize_operation`
171/// function on the fluent builder. See the [`customize`](crate::client::customize) module for more
172/// information.
173pub mod client;
174
175/// Configuration for Payment Cryptography Control Plane.
176pub mod config;
177
178/// Common errors and error handling utilities.
179pub mod error;
180
181mod error_meta;
182
183/// Information about this crate.
184pub mod meta;
185
186/// All operations that this crate can perform.
187pub mod operation;
188
189/// Primitives such as `Blob` or `DateTime` used by other types.
190pub mod primitives;
191
192/// Data structures used by operation inputs/outputs.
193pub mod types;
194
195mod auth_plugin;
196
197pub(crate) mod protocol_serde;
198
199mod sdk_feature_tracker;
200
201mod serialization_settings;
202
203mod endpoint_lib;
204
205mod lens;
206
207mod serde_util;
208
209mod json_errors;
210
211#[doc(inline)]
212pub use client::Client;