1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_data_source_from_redshift::_create_data_source_from_redshift_output::CreateDataSourceFromRedshiftOutputBuilder;
pub use crate::operation::create_data_source_from_redshift::_create_data_source_from_redshift_input::CreateDataSourceFromRedshiftInputBuilder;
impl CreateDataSourceFromRedshiftInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.create_data_source_from_redshift();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `CreateDataSourceFromRedshift`.
///
/// <p>Creates a <code>DataSource</code> from a database hosted on an Amazon Redshift cluster. A <code>DataSource</code> references data that can be used to perform either <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.</p>
/// <p> <code>CreateDataSourceFromRedshift</code> is an asynchronous operation. In response to <code>CreateDataSourceFromRedshift</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>DataSource</code> status to <code>PENDING</code>. After the <code>DataSource</code> is created and ready for use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>. <code>DataSource</code> in <code>COMPLETED</code> or <code>PENDING</code> states can be used to perform only <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations. </p>
/// <p> If Amazon ML can't accept the input source, it sets the <code>Status</code> parameter to <code>FAILED</code> and includes an error message in the <code>Message</code> attribute of the <code>GetDataSource</code> operation response. </p>
/// <p>The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a <code>SelectSqlQuery</code> query. Amazon ML executes an <code>Unload</code> command in Amazon Redshift to transfer the result set of the <code>SelectSqlQuery</code> query to <code>S3StagingLocation</code>.</p>
/// <p>After the <code>DataSource</code> has been created, it's ready for use in evaluations and batch predictions. If you plan to use the <code>DataSource</code> to train an <code>MLModel</code>, the <code>DataSource</code> also requires a recipe. A recipe describes how each input variable will be used in training an <code>MLModel</code>. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.</p>
/// <p>You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call <code>GetDataSource</code> for an existing datasource and copy the values to a <code>CreateDataSource</code> call. Change the settings that you want to change and make sure that all required fields have the appropriate values.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateDataSourceFromRedshiftFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_data_source_from_redshift::builders::CreateDataSourceFromRedshiftInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftOutput,
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftError,
> for CreateDataSourceFromRedshiftFluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftOutput,
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftError,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl CreateDataSourceFromRedshiftFluentBuilder {
/// Creates a new `CreateDataSourceFromRedshift`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the CreateDataSourceFromRedshift as a reference.
pub fn as_input(&self) -> &crate::operation::create_data_source_from_redshift::builders::CreateDataSourceFromRedshiftInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshift::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshift::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftOutput,
crate::operation::create_data_source_from_redshift::CreateDataSourceFromRedshiftError,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
self.set_config_override(Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>A user-supplied ID that uniquely identifies the <code>DataSource</code>.</p>
pub fn data_source_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.data_source_id(input.into());
self
}
/// <p>A user-supplied ID that uniquely identifies the <code>DataSource</code>.</p>
pub fn set_data_source_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_data_source_id(input);
self
}
/// <p>A user-supplied ID that uniquely identifies the <code>DataSource</code>.</p>
pub fn get_data_source_id(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_data_source_id()
}
/// <p>A user-supplied name or description of the <code>DataSource</code>. </p>
pub fn data_source_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.data_source_name(input.into());
self
}
/// <p>A user-supplied name or description of the <code>DataSource</code>. </p>
pub fn set_data_source_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_data_source_name(input);
self
}
/// <p>A user-supplied name or description of the <code>DataSource</code>. </p>
pub fn get_data_source_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_data_source_name()
}
/// <p>The data specification of an Amazon Redshift <code>DataSource</code>:</p>
/// <ul>
/// <li> <p>DatabaseInformation -</p>
/// <ul>
/// <li> <p> <code>DatabaseName</code> - The name of the Amazon Redshift database.</p> </li>
/// <li> <p> <code> ClusterIdentifier</code> - The unique ID for the Amazon Redshift cluster.</p> </li>
/// </ul> </li>
/// <li> <p>DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.</p> </li>
/// <li> <p>SelectSqlQuery - The query that is used to retrieve the observation data for the <code>Datasource</code>.</p> </li>
/// <li> <p>S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the <code>SelectSqlQuery</code> query is stored in this location.</p> </li>
/// <li> <p>DataSchemaUri - The Amazon S3 location of the <code>DataSchema</code>.</p> </li>
/// <li> <p>DataSchema - A JSON string representing the schema. This is not required if <code>DataSchemaUri</code> is specified. </p> </li>
/// <li> <p>DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the <code>DataSource</code>.</p> <p> Sample - <code> "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"</code> </p> </li>
/// </ul>
pub fn data_spec(mut self, input: crate::types::RedshiftDataSpec) -> Self {
self.inner = self.inner.data_spec(input);
self
}
/// <p>The data specification of an Amazon Redshift <code>DataSource</code>:</p>
/// <ul>
/// <li> <p>DatabaseInformation -</p>
/// <ul>
/// <li> <p> <code>DatabaseName</code> - The name of the Amazon Redshift database.</p> </li>
/// <li> <p> <code> ClusterIdentifier</code> - The unique ID for the Amazon Redshift cluster.</p> </li>
/// </ul> </li>
/// <li> <p>DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.</p> </li>
/// <li> <p>SelectSqlQuery - The query that is used to retrieve the observation data for the <code>Datasource</code>.</p> </li>
/// <li> <p>S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the <code>SelectSqlQuery</code> query is stored in this location.</p> </li>
/// <li> <p>DataSchemaUri - The Amazon S3 location of the <code>DataSchema</code>.</p> </li>
/// <li> <p>DataSchema - A JSON string representing the schema. This is not required if <code>DataSchemaUri</code> is specified. </p> </li>
/// <li> <p>DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the <code>DataSource</code>.</p> <p> Sample - <code> "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"</code> </p> </li>
/// </ul>
pub fn set_data_spec(mut self, input: ::std::option::Option<crate::types::RedshiftDataSpec>) -> Self {
self.inner = self.inner.set_data_spec(input);
self
}
/// <p>The data specification of an Amazon Redshift <code>DataSource</code>:</p>
/// <ul>
/// <li> <p>DatabaseInformation -</p>
/// <ul>
/// <li> <p> <code>DatabaseName</code> - The name of the Amazon Redshift database.</p> </li>
/// <li> <p> <code> ClusterIdentifier</code> - The unique ID for the Amazon Redshift cluster.</p> </li>
/// </ul> </li>
/// <li> <p>DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.</p> </li>
/// <li> <p>SelectSqlQuery - The query that is used to retrieve the observation data for the <code>Datasource</code>.</p> </li>
/// <li> <p>S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the <code>SelectSqlQuery</code> query is stored in this location.</p> </li>
/// <li> <p>DataSchemaUri - The Amazon S3 location of the <code>DataSchema</code>.</p> </li>
/// <li> <p>DataSchema - A JSON string representing the schema. This is not required if <code>DataSchemaUri</code> is specified. </p> </li>
/// <li> <p>DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the <code>DataSource</code>.</p> <p> Sample - <code> "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"</code> </p> </li>
/// </ul>
pub fn get_data_spec(&self) -> &::std::option::Option<crate::types::RedshiftDataSpec> {
self.inner.get_data_spec()
}
/// <p>A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:</p>
/// <ul>
/// <li> <p>A security group to allow Amazon ML to execute the <code>SelectSqlQuery</code> query on an Amazon Redshift cluster</p> </li>
/// <li> <p>An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the <code>S3StagingLocation</code> </p> </li>
/// </ul>
pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.role_arn(input.into());
self
}
/// <p>A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:</p>
/// <ul>
/// <li> <p>A security group to allow Amazon ML to execute the <code>SelectSqlQuery</code> query on an Amazon Redshift cluster</p> </li>
/// <li> <p>An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the <code>S3StagingLocation</code> </p> </li>
/// </ul>
pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_role_arn(input);
self
}
/// <p>A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:</p>
/// <ul>
/// <li> <p>A security group to allow Amazon ML to execute the <code>SelectSqlQuery</code> query on an Amazon Redshift cluster</p> </li>
/// <li> <p>An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the <code>S3StagingLocation</code> </p> </li>
/// </ul>
pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_role_arn()
}
/// <p>The compute statistics for a <code>DataSource</code>. The statistics are generated from the observation data referenced by a <code>DataSource</code>. Amazon ML uses the statistics internally during <code>MLModel</code> training. This parameter must be set to <code>true</code> if the <code>DataSource</code> needs to be used for <code>MLModel</code> training.</p>
pub fn compute_statistics(mut self, input: bool) -> Self {
self.inner = self.inner.compute_statistics(input);
self
}
/// <p>The compute statistics for a <code>DataSource</code>. The statistics are generated from the observation data referenced by a <code>DataSource</code>. Amazon ML uses the statistics internally during <code>MLModel</code> training. This parameter must be set to <code>true</code> if the <code>DataSource</code> needs to be used for <code>MLModel</code> training.</p>
pub fn set_compute_statistics(mut self, input: ::std::option::Option<bool>) -> Self {
self.inner = self.inner.set_compute_statistics(input);
self
}
/// <p>The compute statistics for a <code>DataSource</code>. The statistics are generated from the observation data referenced by a <code>DataSource</code>. Amazon ML uses the statistics internally during <code>MLModel</code> training. This parameter must be set to <code>true</code> if the <code>DataSource</code> needs to be used for <code>MLModel</code> training.</p>
pub fn get_compute_statistics(&self) -> &::std::option::Option<bool> {
self.inner.get_compute_statistics()
}
}