1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
/// <p>Represents the output of a <code>GetEvaluation</code> operation and describes an <code>Evaluation</code>.</p>
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::fmt::Debug)]
pub struct GetEvaluationOutput {
/// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
pub evaluation_id: ::std::option::Option<::std::string::String>,
/// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
pub ml_model_id: ::std::option::Option<::std::string::String>,
/// <p>The <code>DataSource</code> used for this evaluation.</p>
pub evaluation_data_source_id: ::std::option::Option<::std::string::String>,
/// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
pub input_data_location_s3: ::std::option::Option<::std::string::String>,
/// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
pub created_by_iam_user: ::std::option::Option<::std::string::String>,
/// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
pub created_at: ::std::option::Option<::aws_smithy_types::DateTime>,
/// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
pub last_updated_at: ::std::option::Option<::aws_smithy_types::DateTime>,
/// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
pub name: ::std::option::Option<::std::string::String>,
/// <p>The status of the evaluation. This element can have one of the following values:</p>
/// <ul>
/// <li>
/// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
/// <li>
/// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
/// <li>
/// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
/// <li>
/// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
/// <li>
/// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
/// </ul>
pub status: ::std::option::Option<crate::types::EntityStatus>,
/// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
/// <ul>
/// <li>
/// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
/// <li>
/// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
/// <li>
/// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
/// </ul>
/// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
pub performance_metrics: ::std::option::Option<crate::types::PerformanceMetrics>,
/// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
pub log_uri: ::std::option::Option<::std::string::String>,
/// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
pub message: ::std::option::Option<::std::string::String>,
/// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
pub compute_time: ::std::option::Option<i64>,
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
pub finished_at: ::std::option::Option<::aws_smithy_types::DateTime>,
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
pub started_at: ::std::option::Option<::aws_smithy_types::DateTime>,
_request_id: Option<String>,
}
impl GetEvaluationOutput {
/// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
pub fn evaluation_id(&self) -> ::std::option::Option<&str> {
self.evaluation_id.as_deref()
}
/// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
pub fn ml_model_id(&self) -> ::std::option::Option<&str> {
self.ml_model_id.as_deref()
}
/// <p>The <code>DataSource</code> used for this evaluation.</p>
pub fn evaluation_data_source_id(&self) -> ::std::option::Option<&str> {
self.evaluation_data_source_id.as_deref()
}
/// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
pub fn input_data_location_s3(&self) -> ::std::option::Option<&str> {
self.input_data_location_s3.as_deref()
}
/// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
pub fn created_by_iam_user(&self) -> ::std::option::Option<&str> {
self.created_by_iam_user.as_deref()
}
/// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
pub fn created_at(&self) -> ::std::option::Option<&::aws_smithy_types::DateTime> {
self.created_at.as_ref()
}
/// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
pub fn last_updated_at(&self) -> ::std::option::Option<&::aws_smithy_types::DateTime> {
self.last_updated_at.as_ref()
}
/// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
pub fn name(&self) -> ::std::option::Option<&str> {
self.name.as_deref()
}
/// <p>The status of the evaluation. This element can have one of the following values:</p>
/// <ul>
/// <li>
/// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
/// <li>
/// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
/// <li>
/// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
/// <li>
/// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
/// <li>
/// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
/// </ul>
pub fn status(&self) -> ::std::option::Option<&crate::types::EntityStatus> {
self.status.as_ref()
}
/// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
/// <ul>
/// <li>
/// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
/// <li>
/// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
/// <li>
/// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
/// </ul>
/// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
pub fn performance_metrics(&self) -> ::std::option::Option<&crate::types::PerformanceMetrics> {
self.performance_metrics.as_ref()
}
/// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
pub fn log_uri(&self) -> ::std::option::Option<&str> {
self.log_uri.as_deref()
}
/// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
pub fn message(&self) -> ::std::option::Option<&str> {
self.message.as_deref()
}
/// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
pub fn compute_time(&self) -> ::std::option::Option<i64> {
self.compute_time
}
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
pub fn finished_at(&self) -> ::std::option::Option<&::aws_smithy_types::DateTime> {
self.finished_at.as_ref()
}
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
pub fn started_at(&self) -> ::std::option::Option<&::aws_smithy_types::DateTime> {
self.started_at.as_ref()
}
}
impl ::aws_types::request_id::RequestId for GetEvaluationOutput {
fn request_id(&self) -> Option<&str> {
self._request_id.as_deref()
}
}
impl GetEvaluationOutput {
/// Creates a new builder-style object to manufacture [`GetEvaluationOutput`](crate::operation::get_evaluation::GetEvaluationOutput).
pub fn builder() -> crate::operation::get_evaluation::builders::GetEvaluationOutputBuilder {
crate::operation::get_evaluation::builders::GetEvaluationOutputBuilder::default()
}
}
/// A builder for [`GetEvaluationOutput`](crate::operation::get_evaluation::GetEvaluationOutput).
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default, ::std::fmt::Debug)]
pub struct GetEvaluationOutputBuilder {
pub(crate) evaluation_id: ::std::option::Option<::std::string::String>,
pub(crate) ml_model_id: ::std::option::Option<::std::string::String>,
pub(crate) evaluation_data_source_id: ::std::option::Option<::std::string::String>,
pub(crate) input_data_location_s3: ::std::option::Option<::std::string::String>,
pub(crate) created_by_iam_user: ::std::option::Option<::std::string::String>,
pub(crate) created_at: ::std::option::Option<::aws_smithy_types::DateTime>,
pub(crate) last_updated_at: ::std::option::Option<::aws_smithy_types::DateTime>,
pub(crate) name: ::std::option::Option<::std::string::String>,
pub(crate) status: ::std::option::Option<crate::types::EntityStatus>,
pub(crate) performance_metrics: ::std::option::Option<crate::types::PerformanceMetrics>,
pub(crate) log_uri: ::std::option::Option<::std::string::String>,
pub(crate) message: ::std::option::Option<::std::string::String>,
pub(crate) compute_time: ::std::option::Option<i64>,
pub(crate) finished_at: ::std::option::Option<::aws_smithy_types::DateTime>,
pub(crate) started_at: ::std::option::Option<::aws_smithy_types::DateTime>,
_request_id: Option<String>,
}
impl GetEvaluationOutputBuilder {
/// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
pub fn evaluation_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.evaluation_id = ::std::option::Option::Some(input.into());
self
}
/// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
pub fn set_evaluation_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.evaluation_id = input;
self
}
/// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
pub fn get_evaluation_id(&self) -> &::std::option::Option<::std::string::String> {
&self.evaluation_id
}
/// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
pub fn ml_model_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.ml_model_id = ::std::option::Option::Some(input.into());
self
}
/// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
pub fn set_ml_model_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.ml_model_id = input;
self
}
/// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
pub fn get_ml_model_id(&self) -> &::std::option::Option<::std::string::String> {
&self.ml_model_id
}
/// <p>The <code>DataSource</code> used for this evaluation.</p>
pub fn evaluation_data_source_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.evaluation_data_source_id = ::std::option::Option::Some(input.into());
self
}
/// <p>The <code>DataSource</code> used for this evaluation.</p>
pub fn set_evaluation_data_source_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.evaluation_data_source_id = input;
self
}
/// <p>The <code>DataSource</code> used for this evaluation.</p>
pub fn get_evaluation_data_source_id(&self) -> &::std::option::Option<::std::string::String> {
&self.evaluation_data_source_id
}
/// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
pub fn input_data_location_s3(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.input_data_location_s3 = ::std::option::Option::Some(input.into());
self
}
/// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
pub fn set_input_data_location_s3(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.input_data_location_s3 = input;
self
}
/// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
pub fn get_input_data_location_s3(&self) -> &::std::option::Option<::std::string::String> {
&self.input_data_location_s3
}
/// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
pub fn created_by_iam_user(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.created_by_iam_user = ::std::option::Option::Some(input.into());
self
}
/// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
pub fn set_created_by_iam_user(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.created_by_iam_user = input;
self
}
/// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
pub fn get_created_by_iam_user(&self) -> &::std::option::Option<::std::string::String> {
&self.created_by_iam_user
}
/// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
pub fn created_at(mut self, input: ::aws_smithy_types::DateTime) -> Self {
self.created_at = ::std::option::Option::Some(input);
self
}
/// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
pub fn set_created_at(mut self, input: ::std::option::Option<::aws_smithy_types::DateTime>) -> Self {
self.created_at = input;
self
}
/// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
pub fn get_created_at(&self) -> &::std::option::Option<::aws_smithy_types::DateTime> {
&self.created_at
}
/// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
pub fn last_updated_at(mut self, input: ::aws_smithy_types::DateTime) -> Self {
self.last_updated_at = ::std::option::Option::Some(input);
self
}
/// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
pub fn set_last_updated_at(mut self, input: ::std::option::Option<::aws_smithy_types::DateTime>) -> Self {
self.last_updated_at = input;
self
}
/// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
pub fn get_last_updated_at(&self) -> &::std::option::Option<::aws_smithy_types::DateTime> {
&self.last_updated_at
}
/// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.name = ::std::option::Option::Some(input.into());
self
}
/// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.name = input;
self
}
/// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
&self.name
}
/// <p>The status of the evaluation. This element can have one of the following values:</p>
/// <ul>
/// <li>
/// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
/// <li>
/// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
/// <li>
/// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
/// <li>
/// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
/// <li>
/// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
/// </ul>
pub fn status(mut self, input: crate::types::EntityStatus) -> Self {
self.status = ::std::option::Option::Some(input);
self
}
/// <p>The status of the evaluation. This element can have one of the following values:</p>
/// <ul>
/// <li>
/// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
/// <li>
/// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
/// <li>
/// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
/// <li>
/// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
/// <li>
/// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
/// </ul>
pub fn set_status(mut self, input: ::std::option::Option<crate::types::EntityStatus>) -> Self {
self.status = input;
self
}
/// <p>The status of the evaluation. This element can have one of the following values:</p>
/// <ul>
/// <li>
/// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
/// <li>
/// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
/// <li>
/// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
/// <li>
/// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
/// <li>
/// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
/// </ul>
pub fn get_status(&self) -> &::std::option::Option<crate::types::EntityStatus> {
&self.status
}
/// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
/// <ul>
/// <li>
/// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
/// <li>
/// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
/// <li>
/// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
/// </ul>
/// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
pub fn performance_metrics(mut self, input: crate::types::PerformanceMetrics) -> Self {
self.performance_metrics = ::std::option::Option::Some(input);
self
}
/// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
/// <ul>
/// <li>
/// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
/// <li>
/// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
/// <li>
/// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
/// </ul>
/// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
pub fn set_performance_metrics(mut self, input: ::std::option::Option<crate::types::PerformanceMetrics>) -> Self {
self.performance_metrics = input;
self
}
/// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
/// <ul>
/// <li>
/// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
/// <li>
/// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
/// <li>
/// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
/// </ul>
/// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
pub fn get_performance_metrics(&self) -> &::std::option::Option<crate::types::PerformanceMetrics> {
&self.performance_metrics
}
/// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
pub fn log_uri(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.log_uri = ::std::option::Option::Some(input.into());
self
}
/// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
pub fn set_log_uri(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.log_uri = input;
self
}
/// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
pub fn get_log_uri(&self) -> &::std::option::Option<::std::string::String> {
&self.log_uri
}
/// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
pub fn message(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.message = ::std::option::Option::Some(input.into());
self
}
/// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
pub fn set_message(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.message = input;
self
}
/// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
pub fn get_message(&self) -> &::std::option::Option<::std::string::String> {
&self.message
}
/// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
pub fn compute_time(mut self, input: i64) -> Self {
self.compute_time = ::std::option::Option::Some(input);
self
}
/// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
pub fn set_compute_time(mut self, input: ::std::option::Option<i64>) -> Self {
self.compute_time = input;
self
}
/// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
pub fn get_compute_time(&self) -> &::std::option::Option<i64> {
&self.compute_time
}
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
pub fn finished_at(mut self, input: ::aws_smithy_types::DateTime) -> Self {
self.finished_at = ::std::option::Option::Some(input);
self
}
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
pub fn set_finished_at(mut self, input: ::std::option::Option<::aws_smithy_types::DateTime>) -> Self {
self.finished_at = input;
self
}
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
pub fn get_finished_at(&self) -> &::std::option::Option<::aws_smithy_types::DateTime> {
&self.finished_at
}
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
pub fn started_at(mut self, input: ::aws_smithy_types::DateTime) -> Self {
self.started_at = ::std::option::Option::Some(input);
self
}
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
pub fn set_started_at(mut self, input: ::std::option::Option<::aws_smithy_types::DateTime>) -> Self {
self.started_at = input;
self
}
/// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
pub fn get_started_at(&self) -> &::std::option::Option<::aws_smithy_types::DateTime> {
&self.started_at
}
pub(crate) fn _request_id(mut self, request_id: impl Into<String>) -> Self {
self._request_id = Some(request_id.into());
self
}
pub(crate) fn _set_request_id(&mut self, request_id: Option<String>) -> &mut Self {
self._request_id = request_id;
self
}
/// Consumes the builder and constructs a [`GetEvaluationOutput`](crate::operation::get_evaluation::GetEvaluationOutput).
pub fn build(self) -> crate::operation::get_evaluation::GetEvaluationOutput {
crate::operation::get_evaluation::GetEvaluationOutput {
evaluation_id: self.evaluation_id,
ml_model_id: self.ml_model_id,
evaluation_data_source_id: self.evaluation_data_source_id,
input_data_location_s3: self.input_data_location_s3,
created_by_iam_user: self.created_by_iam_user,
created_at: self.created_at,
last_updated_at: self.last_updated_at,
name: self.name,
status: self.status,
performance_metrics: self.performance_metrics,
log_uri: self.log_uri,
message: self.message,
compute_time: self.compute_time,
finished_at: self.finished_at,
started_at: self.started_at,
_request_id: self._request_id,
}
}
}