1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.

/// <p>Represents the output of a <code>GetEvaluation</code> operation and describes an <code>Evaluation</code>.</p>
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::fmt::Debug)]
pub struct GetEvaluationOutput {
    /// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
    pub evaluation_id: ::std::option::Option<::std::string::String>,
    /// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
    pub ml_model_id: ::std::option::Option<::std::string::String>,
    /// <p>The <code>DataSource</code> used for this evaluation.</p>
    pub evaluation_data_source_id: ::std::option::Option<::std::string::String>,
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    pub input_data_location_s3: ::std::option::Option<::std::string::String>,
    /// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    pub created_by_iam_user: ::std::option::Option<::std::string::String>,
    /// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
    pub created_at: ::std::option::Option<::aws_smithy_types::DateTime>,
    /// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
    pub last_updated_at: ::std::option::Option<::aws_smithy_types::DateTime>,
    /// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
    pub name: ::std::option::Option<::std::string::String>,
    /// <p>The status of the evaluation. This element can have one of the following values:</p>
    /// <ul>
    /// <li>
    /// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
    /// <li>
    /// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
    /// <li>
    /// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
    /// <li>
    /// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
    /// <li>
    /// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
    /// </ul>
    pub status: ::std::option::Option<crate::types::EntityStatus>,
    /// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
    /// <ul>
    /// <li>
    /// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
    /// <li>
    /// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
    /// <li>
    /// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
    /// </ul>
    /// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
    pub performance_metrics: ::std::option::Option<crate::types::PerformanceMetrics>,
    /// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
    pub log_uri: ::std::option::Option<::std::string::String>,
    /// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
    pub message: ::std::option::Option<::std::string::String>,
    /// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
    pub compute_time: ::std::option::Option<i64>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
    pub finished_at: ::std::option::Option<::aws_smithy_types::DateTime>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
    pub started_at: ::std::option::Option<::aws_smithy_types::DateTime>,
    _request_id: Option<String>,
}
impl GetEvaluationOutput {
    /// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
    pub fn evaluation_id(&self) -> ::std::option::Option<&str> {
        self.evaluation_id.as_deref()
    }
    /// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
    pub fn ml_model_id(&self) -> ::std::option::Option<&str> {
        self.ml_model_id.as_deref()
    }
    /// <p>The <code>DataSource</code> used for this evaluation.</p>
    pub fn evaluation_data_source_id(&self) -> ::std::option::Option<&str> {
        self.evaluation_data_source_id.as_deref()
    }
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    pub fn input_data_location_s3(&self) -> ::std::option::Option<&str> {
        self.input_data_location_s3.as_deref()
    }
    /// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    pub fn created_by_iam_user(&self) -> ::std::option::Option<&str> {
        self.created_by_iam_user.as_deref()
    }
    /// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
    pub fn created_at(&self) -> ::std::option::Option<&::aws_smithy_types::DateTime> {
        self.created_at.as_ref()
    }
    /// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
    pub fn last_updated_at(&self) -> ::std::option::Option<&::aws_smithy_types::DateTime> {
        self.last_updated_at.as_ref()
    }
    /// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
    pub fn name(&self) -> ::std::option::Option<&str> {
        self.name.as_deref()
    }
    /// <p>The status of the evaluation. This element can have one of the following values:</p>
    /// <ul>
    /// <li>
    /// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
    /// <li>
    /// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
    /// <li>
    /// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
    /// <li>
    /// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
    /// <li>
    /// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
    /// </ul>
    pub fn status(&self) -> ::std::option::Option<&crate::types::EntityStatus> {
        self.status.as_ref()
    }
    /// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
    /// <ul>
    /// <li>
    /// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
    /// <li>
    /// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
    /// <li>
    /// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
    /// </ul>
    /// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
    pub fn performance_metrics(&self) -> ::std::option::Option<&crate::types::PerformanceMetrics> {
        self.performance_metrics.as_ref()
    }
    /// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
    pub fn log_uri(&self) -> ::std::option::Option<&str> {
        self.log_uri.as_deref()
    }
    /// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
    pub fn message(&self) -> ::std::option::Option<&str> {
        self.message.as_deref()
    }
    /// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
    pub fn compute_time(&self) -> ::std::option::Option<i64> {
        self.compute_time
    }
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
    pub fn finished_at(&self) -> ::std::option::Option<&::aws_smithy_types::DateTime> {
        self.finished_at.as_ref()
    }
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
    pub fn started_at(&self) -> ::std::option::Option<&::aws_smithy_types::DateTime> {
        self.started_at.as_ref()
    }
}
impl ::aws_types::request_id::RequestId for GetEvaluationOutput {
    fn request_id(&self) -> Option<&str> {
        self._request_id.as_deref()
    }
}
impl GetEvaluationOutput {
    /// Creates a new builder-style object to manufacture [`GetEvaluationOutput`](crate::operation::get_evaluation::GetEvaluationOutput).
    pub fn builder() -> crate::operation::get_evaluation::builders::GetEvaluationOutputBuilder {
        crate::operation::get_evaluation::builders::GetEvaluationOutputBuilder::default()
    }
}

/// A builder for [`GetEvaluationOutput`](crate::operation::get_evaluation::GetEvaluationOutput).
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default, ::std::fmt::Debug)]
pub struct GetEvaluationOutputBuilder {
    pub(crate) evaluation_id: ::std::option::Option<::std::string::String>,
    pub(crate) ml_model_id: ::std::option::Option<::std::string::String>,
    pub(crate) evaluation_data_source_id: ::std::option::Option<::std::string::String>,
    pub(crate) input_data_location_s3: ::std::option::Option<::std::string::String>,
    pub(crate) created_by_iam_user: ::std::option::Option<::std::string::String>,
    pub(crate) created_at: ::std::option::Option<::aws_smithy_types::DateTime>,
    pub(crate) last_updated_at: ::std::option::Option<::aws_smithy_types::DateTime>,
    pub(crate) name: ::std::option::Option<::std::string::String>,
    pub(crate) status: ::std::option::Option<crate::types::EntityStatus>,
    pub(crate) performance_metrics: ::std::option::Option<crate::types::PerformanceMetrics>,
    pub(crate) log_uri: ::std::option::Option<::std::string::String>,
    pub(crate) message: ::std::option::Option<::std::string::String>,
    pub(crate) compute_time: ::std::option::Option<i64>,
    pub(crate) finished_at: ::std::option::Option<::aws_smithy_types::DateTime>,
    pub(crate) started_at: ::std::option::Option<::aws_smithy_types::DateTime>,
    _request_id: Option<String>,
}
impl GetEvaluationOutputBuilder {
    /// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
    pub fn evaluation_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.evaluation_id = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
    pub fn set_evaluation_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.evaluation_id = input;
        self
    }
    /// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
    pub fn get_evaluation_id(&self) -> &::std::option::Option<::std::string::String> {
        &self.evaluation_id
    }
    /// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
    pub fn ml_model_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.ml_model_id = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
    pub fn set_ml_model_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.ml_model_id = input;
        self
    }
    /// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
    pub fn get_ml_model_id(&self) -> &::std::option::Option<::std::string::String> {
        &self.ml_model_id
    }
    /// <p>The <code>DataSource</code> used for this evaluation.</p>
    pub fn evaluation_data_source_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.evaluation_data_source_id = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The <code>DataSource</code> used for this evaluation.</p>
    pub fn set_evaluation_data_source_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.evaluation_data_source_id = input;
        self
    }
    /// <p>The <code>DataSource</code> used for this evaluation.</p>
    pub fn get_evaluation_data_source_id(&self) -> &::std::option::Option<::std::string::String> {
        &self.evaluation_data_source_id
    }
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    pub fn input_data_location_s3(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.input_data_location_s3 = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    pub fn set_input_data_location_s3(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.input_data_location_s3 = input;
        self
    }
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    pub fn get_input_data_location_s3(&self) -> &::std::option::Option<::std::string::String> {
        &self.input_data_location_s3
    }
    /// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    pub fn created_by_iam_user(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.created_by_iam_user = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    pub fn set_created_by_iam_user(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.created_by_iam_user = input;
        self
    }
    /// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    pub fn get_created_by_iam_user(&self) -> &::std::option::Option<::std::string::String> {
        &self.created_by_iam_user
    }
    /// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
    pub fn created_at(mut self, input: ::aws_smithy_types::DateTime) -> Self {
        self.created_at = ::std::option::Option::Some(input);
        self
    }
    /// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
    pub fn set_created_at(mut self, input: ::std::option::Option<::aws_smithy_types::DateTime>) -> Self {
        self.created_at = input;
        self
    }
    /// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
    pub fn get_created_at(&self) -> &::std::option::Option<::aws_smithy_types::DateTime> {
        &self.created_at
    }
    /// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
    pub fn last_updated_at(mut self, input: ::aws_smithy_types::DateTime) -> Self {
        self.last_updated_at = ::std::option::Option::Some(input);
        self
    }
    /// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
    pub fn set_last_updated_at(mut self, input: ::std::option::Option<::aws_smithy_types::DateTime>) -> Self {
        self.last_updated_at = input;
        self
    }
    /// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
    pub fn get_last_updated_at(&self) -> &::std::option::Option<::aws_smithy_types::DateTime> {
        &self.last_updated_at
    }
    /// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
    pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.name = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
    pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.name = input;
        self
    }
    /// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
    pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
        &self.name
    }
    /// <p>The status of the evaluation. This element can have one of the following values:</p>
    /// <ul>
    /// <li>
    /// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
    /// <li>
    /// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
    /// <li>
    /// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
    /// <li>
    /// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
    /// <li>
    /// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
    /// </ul>
    pub fn status(mut self, input: crate::types::EntityStatus) -> Self {
        self.status = ::std::option::Option::Some(input);
        self
    }
    /// <p>The status of the evaluation. This element can have one of the following values:</p>
    /// <ul>
    /// <li>
    /// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
    /// <li>
    /// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
    /// <li>
    /// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
    /// <li>
    /// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
    /// <li>
    /// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
    /// </ul>
    pub fn set_status(mut self, input: ::std::option::Option<crate::types::EntityStatus>) -> Self {
        self.status = input;
        self
    }
    /// <p>The status of the evaluation. This element can have one of the following values:</p>
    /// <ul>
    /// <li>
    /// <p><code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</p></li>
    /// <li>
    /// <p><code>INPROGRESS</code> - The evaluation is underway.</p></li>
    /// <li>
    /// <p><code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</p></li>
    /// <li>
    /// <p><code>COMPLETED</code> - The evaluation process completed successfully.</p></li>
    /// <li>
    /// <p><code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</p></li>
    /// </ul>
    pub fn get_status(&self) -> &::std::option::Option<crate::types::EntityStatus> {
        &self.status
    }
    /// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
    /// <ul>
    /// <li>
    /// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
    /// <li>
    /// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
    /// <li>
    /// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
    /// </ul>
    /// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
    pub fn performance_metrics(mut self, input: crate::types::PerformanceMetrics) -> Self {
        self.performance_metrics = ::std::option::Option::Some(input);
        self
    }
    /// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
    /// <ul>
    /// <li>
    /// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
    /// <li>
    /// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
    /// <li>
    /// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
    /// </ul>
    /// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
    pub fn set_performance_metrics(mut self, input: ::std::option::Option<crate::types::PerformanceMetrics>) -> Self {
        self.performance_metrics = input;
        self
    }
    /// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>:</p>
    /// <ul>
    /// <li>
    /// <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance.</p></li>
    /// <li>
    /// <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p></li>
    /// <li>
    /// <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance.</p></li>
    /// </ul>
    /// <p>For more information about performance metrics, please see the <a href="https://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
    pub fn get_performance_metrics(&self) -> &::std::option::Option<crate::types::PerformanceMetrics> {
        &self.performance_metrics
    }
    /// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
    pub fn log_uri(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.log_uri = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
    pub fn set_log_uri(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.log_uri = input;
        self
    }
    /// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
    pub fn get_log_uri(&self) -> &::std::option::Option<::std::string::String> {
        &self.log_uri
    }
    /// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
    pub fn message(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.message = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
    pub fn set_message(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.message = input;
        self
    }
    /// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
    pub fn get_message(&self) -> &::std::option::Option<::std::string::String> {
        &self.message
    }
    /// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
    pub fn compute_time(mut self, input: i64) -> Self {
        self.compute_time = ::std::option::Option::Some(input);
        self
    }
    /// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
    pub fn set_compute_time(mut self, input: ::std::option::Option<i64>) -> Self {
        self.compute_time = input;
        self
    }
    /// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
    pub fn get_compute_time(&self) -> &::std::option::Option<i64> {
        &self.compute_time
    }
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
    pub fn finished_at(mut self, input: ::aws_smithy_types::DateTime) -> Self {
        self.finished_at = ::std::option::Option::Some(input);
        self
    }
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
    pub fn set_finished_at(mut self, input: ::std::option::Option<::aws_smithy_types::DateTime>) -> Self {
        self.finished_at = input;
        self
    }
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
    pub fn get_finished_at(&self) -> &::std::option::Option<::aws_smithy_types::DateTime> {
        &self.finished_at
    }
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
    pub fn started_at(mut self, input: ::aws_smithy_types::DateTime) -> Self {
        self.started_at = ::std::option::Option::Some(input);
        self
    }
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
    pub fn set_started_at(mut self, input: ::std::option::Option<::aws_smithy_types::DateTime>) -> Self {
        self.started_at = input;
        self
    }
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
    pub fn get_started_at(&self) -> &::std::option::Option<::aws_smithy_types::DateTime> {
        &self.started_at
    }
    pub(crate) fn _request_id(mut self, request_id: impl Into<String>) -> Self {
        self._request_id = Some(request_id.into());
        self
    }

    pub(crate) fn _set_request_id(&mut self, request_id: Option<String>) -> &mut Self {
        self._request_id = request_id;
        self
    }
    /// Consumes the builder and constructs a [`GetEvaluationOutput`](crate::operation::get_evaluation::GetEvaluationOutput).
    pub fn build(self) -> crate::operation::get_evaluation::GetEvaluationOutput {
        crate::operation::get_evaluation::GetEvaluationOutput {
            evaluation_id: self.evaluation_id,
            ml_model_id: self.ml_model_id,
            evaluation_data_source_id: self.evaluation_data_source_id,
            input_data_location_s3: self.input_data_location_s3,
            created_by_iam_user: self.created_by_iam_user,
            created_at: self.created_at,
            last_updated_at: self.last_updated_at,
            name: self.name,
            status: self.status,
            performance_metrics: self.performance_metrics,
            log_uri: self.log_uri,
            message: self.message,
            compute_time: self.compute_time,
            finished_at: self.finished_at,
            started_at: self.started_at,
            _request_id: self._request_id,
        }
    }
}