1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::update_ml_model::_update_ml_model_output::UpdateMlModelOutputBuilder;

pub use crate::operation::update_ml_model::_update_ml_model_input::UpdateMlModelInputBuilder;

impl UpdateMlModelInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::update_ml_model::UpdateMlModelOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::update_ml_model::UpdateMLModelError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.update_ml_model();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `UpdateMLModel`.
///
/// <p>Updates the <code>MLModelName</code> and the <code>ScoreThreshold</code> of an <code>MLModel</code>.</p>
/// <p>You can use the <code>GetMLModel</code> operation to view the contents of the updated data element.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct UpdateMLModelFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::update_ml_model::builders::UpdateMlModelInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::update_ml_model::UpdateMlModelOutput,
        crate::operation::update_ml_model::UpdateMLModelError,
    > for UpdateMLModelFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::update_ml_model::UpdateMlModelOutput,
            crate::operation::update_ml_model::UpdateMLModelError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl UpdateMLModelFluentBuilder {
    /// Creates a new `UpdateMLModel`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the UpdateMLModel as a reference.
    pub fn as_input(&self) -> &crate::operation::update_ml_model::builders::UpdateMlModelInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::update_ml_model::UpdateMlModelOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::update_ml_model::UpdateMLModelError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::update_ml_model::UpdateMLModel::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::update_ml_model::UpdateMLModel::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::update_ml_model::UpdateMlModelOutput,
        crate::operation::update_ml_model::UpdateMLModelError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>The ID assigned to the <code>MLModel</code> during creation.</p>
    pub fn ml_model_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.ml_model_id(input.into());
        self
    }
    /// <p>The ID assigned to the <code>MLModel</code> during creation.</p>
    pub fn set_ml_model_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_ml_model_id(input);
        self
    }
    /// <p>The ID assigned to the <code>MLModel</code> during creation.</p>
    pub fn get_ml_model_id(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_ml_model_id()
    }
    /// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
    pub fn ml_model_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.ml_model_name(input.into());
        self
    }
    /// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
    pub fn set_ml_model_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_ml_model_name(input);
        self
    }
    /// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
    pub fn get_ml_model_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_ml_model_name()
    }
    /// <p>The <code>ScoreThreshold</code> used in binary classification <code>MLModel</code> that marks the boundary between a positive prediction and a negative prediction.</p>
    /// <p>Output values greater than or equal to the <code>ScoreThreshold</code> receive a positive result from the <code>MLModel</code>, such as <code>true</code>. Output values less than the <code>ScoreThreshold</code> receive a negative response from the <code>MLModel</code>, such as <code>false</code>.</p>
    pub fn score_threshold(mut self, input: f32) -> Self {
        self.inner = self.inner.score_threshold(input);
        self
    }
    /// <p>The <code>ScoreThreshold</code> used in binary classification <code>MLModel</code> that marks the boundary between a positive prediction and a negative prediction.</p>
    /// <p>Output values greater than or equal to the <code>ScoreThreshold</code> receive a positive result from the <code>MLModel</code>, such as <code>true</code>. Output values less than the <code>ScoreThreshold</code> receive a negative response from the <code>MLModel</code>, such as <code>false</code>.</p>
    pub fn set_score_threshold(mut self, input: ::std::option::Option<f32>) -> Self {
        self.inner = self.inner.set_score_threshold(input);
        self
    }
    /// <p>The <code>ScoreThreshold</code> used in binary classification <code>MLModel</code> that marks the boundary between a positive prediction and a negative prediction.</p>
    /// <p>Output values greater than or equal to the <code>ScoreThreshold</code> receive a positive result from the <code>MLModel</code>, such as <code>true</code>. Output values less than the <code>ScoreThreshold</code> receive a negative response from the <code>MLModel</code>, such as <code>false</code>.</p>
    pub fn get_score_threshold(&self) -> &::std::option::Option<f32> {
        self.inner.get_score_threshold()
    }
}