1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_evaluation::_create_evaluation_output::CreateEvaluationOutputBuilder;

pub use crate::operation::create_evaluation::_create_evaluation_input::CreateEvaluationInputBuilder;

impl CreateEvaluationInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::create_evaluation::CreateEvaluationOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_evaluation::CreateEvaluationError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.create_evaluation();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `CreateEvaluation`.
///
/// <p>Creates a new <code>Evaluation</code> of an <code>MLModel</code>. An <code>MLModel</code> is evaluated on a set of observations associated to a <code>DataSource</code>. Like a <code>DataSource</code> for an <code>MLModel</code>, the <code>DataSource</code> for an <code>Evaluation</code> contains values for the <code>Target Variable</code>. The <code>Evaluation</code> compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the <code>MLModel</code> functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding <code>MLModelType</code>: <code>BINARY</code>, <code>REGRESSION</code> or <code>MULTICLASS</code>. </p>
/// <p> <code>CreateEvaluation</code> is an asynchronous operation. In response to <code>CreateEvaluation</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to <code>PENDING</code>. After the <code>Evaluation</code> is created and ready for use, Amazon ML sets the status to <code>COMPLETED</code>. </p>
/// <p>You can use the <code>GetEvaluation</code> operation to check progress of the evaluation during the creation operation.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateEvaluationFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_evaluation::builders::CreateEvaluationInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::create_evaluation::CreateEvaluationOutput,
        crate::operation::create_evaluation::CreateEvaluationError,
    > for CreateEvaluationFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::create_evaluation::CreateEvaluationOutput,
            crate::operation::create_evaluation::CreateEvaluationError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl CreateEvaluationFluentBuilder {
    /// Creates a new `CreateEvaluation`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the CreateEvaluation as a reference.
    pub fn as_input(&self) -> &crate::operation::create_evaluation::builders::CreateEvaluationInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::create_evaluation::CreateEvaluationOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_evaluation::CreateEvaluationError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::create_evaluation::CreateEvaluation::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::create_evaluation::CreateEvaluation::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::create_evaluation::CreateEvaluationOutput,
        crate::operation::create_evaluation::CreateEvaluationError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>A user-supplied ID that uniquely identifies the <code>Evaluation</code>.</p>
    pub fn evaluation_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.evaluation_id(input.into());
        self
    }
    /// <p>A user-supplied ID that uniquely identifies the <code>Evaluation</code>.</p>
    pub fn set_evaluation_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_evaluation_id(input);
        self
    }
    /// <p>A user-supplied ID that uniquely identifies the <code>Evaluation</code>.</p>
    pub fn get_evaluation_id(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_evaluation_id()
    }
    /// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
    pub fn evaluation_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.evaluation_name(input.into());
        self
    }
    /// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
    pub fn set_evaluation_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_evaluation_name(input);
        self
    }
    /// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
    pub fn get_evaluation_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_evaluation_name()
    }
    /// <p>The ID of the <code>MLModel</code> to evaluate.</p>
    /// <p>The schema used in creating the <code>MLModel</code> must match the schema of the <code>DataSource</code> used in the <code>Evaluation</code>.</p>
    pub fn ml_model_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.ml_model_id(input.into());
        self
    }
    /// <p>The ID of the <code>MLModel</code> to evaluate.</p>
    /// <p>The schema used in creating the <code>MLModel</code> must match the schema of the <code>DataSource</code> used in the <code>Evaluation</code>.</p>
    pub fn set_ml_model_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_ml_model_id(input);
        self
    }
    /// <p>The ID of the <code>MLModel</code> to evaluate.</p>
    /// <p>The schema used in creating the <code>MLModel</code> must match the schema of the <code>DataSource</code> used in the <code>Evaluation</code>.</p>
    pub fn get_ml_model_id(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_ml_model_id()
    }
    /// <p>The ID of the <code>DataSource</code> for the evaluation. The schema of the <code>DataSource</code> must match the schema used to create the <code>MLModel</code>.</p>
    pub fn evaluation_data_source_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.evaluation_data_source_id(input.into());
        self
    }
    /// <p>The ID of the <code>DataSource</code> for the evaluation. The schema of the <code>DataSource</code> must match the schema used to create the <code>MLModel</code>.</p>
    pub fn set_evaluation_data_source_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_evaluation_data_source_id(input);
        self
    }
    /// <p>The ID of the <code>DataSource</code> for the evaluation. The schema of the <code>DataSource</code> must match the schema used to create the <code>MLModel</code>.</p>
    pub fn get_evaluation_data_source_id(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_evaluation_data_source_id()
    }
}