1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_evaluation::_create_evaluation_output::CreateEvaluationOutputBuilder;
pub use crate::operation::create_evaluation::_create_evaluation_input::CreateEvaluationInputBuilder;
impl CreateEvaluationInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::create_evaluation::CreateEvaluationOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_evaluation::CreateEvaluationError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.create_evaluation();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `CreateEvaluation`.
///
/// <p>Creates a new <code>Evaluation</code> of an <code>MLModel</code>. An <code>MLModel</code> is evaluated on a set of observations associated to a <code>DataSource</code>. Like a <code>DataSource</code> for an <code>MLModel</code>, the <code>DataSource</code> for an <code>Evaluation</code> contains values for the <code>Target Variable</code>. The <code>Evaluation</code> compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the <code>MLModel</code> functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding <code>MLModelType</code>: <code>BINARY</code>, <code>REGRESSION</code> or <code>MULTICLASS</code>. </p>
/// <p> <code>CreateEvaluation</code> is an asynchronous operation. In response to <code>CreateEvaluation</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to <code>PENDING</code>. After the <code>Evaluation</code> is created and ready for use, Amazon ML sets the status to <code>COMPLETED</code>. </p>
/// <p>You can use the <code>GetEvaluation</code> operation to check progress of the evaluation during the creation operation.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateEvaluationFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_evaluation::builders::CreateEvaluationInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::create_evaluation::CreateEvaluationOutput,
crate::operation::create_evaluation::CreateEvaluationError,
> for CreateEvaluationFluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::create_evaluation::CreateEvaluationOutput,
crate::operation::create_evaluation::CreateEvaluationError,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl CreateEvaluationFluentBuilder {
/// Creates a new `CreateEvaluation`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the CreateEvaluation as a reference.
pub fn as_input(&self) -> &crate::operation::create_evaluation::builders::CreateEvaluationInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::create_evaluation::CreateEvaluationOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_evaluation::CreateEvaluationError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::create_evaluation::CreateEvaluation::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::create_evaluation::CreateEvaluation::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::create_evaluation::CreateEvaluationOutput,
crate::operation::create_evaluation::CreateEvaluationError,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
self.set_config_override(Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>A user-supplied ID that uniquely identifies the <code>Evaluation</code>.</p>
pub fn evaluation_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.evaluation_id(input.into());
self
}
/// <p>A user-supplied ID that uniquely identifies the <code>Evaluation</code>.</p>
pub fn set_evaluation_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_evaluation_id(input);
self
}
/// <p>A user-supplied ID that uniquely identifies the <code>Evaluation</code>.</p>
pub fn get_evaluation_id(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_evaluation_id()
}
/// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
pub fn evaluation_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.evaluation_name(input.into());
self
}
/// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
pub fn set_evaluation_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_evaluation_name(input);
self
}
/// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
pub fn get_evaluation_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_evaluation_name()
}
/// <p>The ID of the <code>MLModel</code> to evaluate.</p>
/// <p>The schema used in creating the <code>MLModel</code> must match the schema of the <code>DataSource</code> used in the <code>Evaluation</code>.</p>
pub fn ml_model_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.ml_model_id(input.into());
self
}
/// <p>The ID of the <code>MLModel</code> to evaluate.</p>
/// <p>The schema used in creating the <code>MLModel</code> must match the schema of the <code>DataSource</code> used in the <code>Evaluation</code>.</p>
pub fn set_ml_model_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_ml_model_id(input);
self
}
/// <p>The ID of the <code>MLModel</code> to evaluate.</p>
/// <p>The schema used in creating the <code>MLModel</code> must match the schema of the <code>DataSource</code> used in the <code>Evaluation</code>.</p>
pub fn get_ml_model_id(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_ml_model_id()
}
/// <p>The ID of the <code>DataSource</code> for the evaluation. The schema of the <code>DataSource</code> must match the schema used to create the <code>MLModel</code>.</p>
pub fn evaluation_data_source_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.evaluation_data_source_id(input.into());
self
}
/// <p>The ID of the <code>DataSource</code> for the evaluation. The schema of the <code>DataSource</code> must match the schema used to create the <code>MLModel</code>.</p>
pub fn set_evaluation_data_source_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_evaluation_data_source_id(input);
self
}
/// <p>The ID of the <code>DataSource</code> for the evaluation. The schema of the <code>DataSource</code> must match the schema used to create the <code>MLModel</code>.</p>
pub fn get_evaluation_data_source_id(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_evaluation_data_source_id()
}
}