1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::update_ml_model::_update_ml_model_output::UpdateMlModelOutputBuilder;
pub use crate::operation::update_ml_model::_update_ml_model_input::UpdateMlModelInputBuilder;
impl UpdateMlModelInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::update_ml_model::UpdateMlModelOutput,
::aws_smithy_http::result::SdkError<
crate::operation::update_ml_model::UpdateMLModelError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.update_ml_model();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `UpdateMLModel`.
///
/// <p>Updates the <code>MLModelName</code> and the <code>ScoreThreshold</code> of an <code>MLModel</code>.</p>
/// <p>You can use the <code>GetMLModel</code> operation to view the contents of the updated data element.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct UpdateMLModelFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::update_ml_model::builders::UpdateMlModelInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl UpdateMLModelFluentBuilder {
/// Creates a new `UpdateMLModel`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the UpdateMLModel as a reference.
pub fn as_input(&self) -> &crate::operation::update_ml_model::builders::UpdateMlModelInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::update_ml_model::UpdateMlModelOutput,
::aws_smithy_http::result::SdkError<
crate::operation::update_ml_model::UpdateMLModelError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self.inner.build().map_err(::aws_smithy_http::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::update_ml_model::UpdateMLModel::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::update_ml_model::UpdateMLModel::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being
/// sent.
// TODO(enableNewSmithyRuntimeCleanup): Remove `async` and `Result` once we switch to orchestrator
pub async fn customize(
self,
) -> ::std::result::Result<
crate::client::customize::orchestrator::CustomizableOperation<
crate::operation::update_ml_model::UpdateMlModelOutput,
crate::operation::update_ml_model::UpdateMLModelError,
>,
::aws_smithy_http::result::SdkError<crate::operation::update_ml_model::UpdateMLModelError>,
> {
::std::result::Result::Ok(crate::client::customize::orchestrator::CustomizableOperation {
customizable_send: ::std::boxed::Box::new(move |config_override| {
::std::boxed::Box::pin(async { self.config_override(config_override).send().await })
}),
config_override: None,
interceptors: vec![],
runtime_plugins: vec![],
})
}
pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
self.set_config_override(Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>The ID assigned to the <code>MLModel</code> during creation.</p>
pub fn ml_model_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.ml_model_id(input.into());
self
}
/// <p>The ID assigned to the <code>MLModel</code> during creation.</p>
pub fn set_ml_model_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_ml_model_id(input);
self
}
/// <p>The ID assigned to the <code>MLModel</code> during creation.</p>
pub fn get_ml_model_id(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_ml_model_id()
}
/// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
pub fn ml_model_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.ml_model_name(input.into());
self
}
/// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
pub fn set_ml_model_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_ml_model_name(input);
self
}
/// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
pub fn get_ml_model_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_ml_model_name()
}
/// <p>The <code>ScoreThreshold</code> used in binary classification <code>MLModel</code> that marks the boundary between a positive prediction and a negative prediction.</p>
/// <p>Output values greater than or equal to the <code>ScoreThreshold</code> receive a positive result from the <code>MLModel</code>, such as <code>true</code>. Output values less than the <code>ScoreThreshold</code> receive a negative response from the <code>MLModel</code>, such as <code>false</code>.</p>
pub fn score_threshold(mut self, input: f32) -> Self {
self.inner = self.inner.score_threshold(input);
self
}
/// <p>The <code>ScoreThreshold</code> used in binary classification <code>MLModel</code> that marks the boundary between a positive prediction and a negative prediction.</p>
/// <p>Output values greater than or equal to the <code>ScoreThreshold</code> receive a positive result from the <code>MLModel</code>, such as <code>true</code>. Output values less than the <code>ScoreThreshold</code> receive a negative response from the <code>MLModel</code>, such as <code>false</code>.</p>
pub fn set_score_threshold(mut self, input: ::std::option::Option<f32>) -> Self {
self.inner = self.inner.set_score_threshold(input);
self
}
/// <p>The <code>ScoreThreshold</code> used in binary classification <code>MLModel</code> that marks the boundary between a positive prediction and a negative prediction.</p>
/// <p>Output values greater than or equal to the <code>ScoreThreshold</code> receive a positive result from the <code>MLModel</code>, such as <code>true</code>. Output values less than the <code>ScoreThreshold</code> receive a negative response from the <code>MLModel</code>, such as <code>false</code>.</p>
pub fn get_score_threshold(&self) -> &::std::option::Option<f32> {
self.inner.get_score_threshold()
}
}