aws_sdk_lookoutvision/operation/create_model/builders.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_model::_create_model_output::CreateModelOutputBuilder;
pub use crate::operation::create_model::_create_model_input::CreateModelInputBuilder;
impl crate::operation::create_model::builders::CreateModelInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::create_model::CreateModelOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_model::CreateModelError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.create_model();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `CreateModel`.
///
/// <p>Creates a new version of a model within an an Amazon Lookout for Vision project. <code>CreateModel</code> is an asynchronous operation in which Amazon Lookout for Vision trains, tests, and evaluates a new version of a model.</p>
/// <p>To get the current status, check the <code>Status</code> field returned in the response from <code>DescribeModel</code>.</p>
/// <p>If the project has a single dataset, Amazon Lookout for Vision internally splits the dataset to create a training and a test dataset. If the project has a training and a test dataset, Lookout for Vision uses the respective datasets to train and test the model.</p>
/// <p>After training completes, the evaluation metrics are stored at the location specified in <code>OutputConfig</code>.</p>
/// <p>This operation requires permissions to perform the <code>lookoutvision:CreateModel</code> operation. If you want to tag your model, you also require permission to the <code>lookoutvision:TagResource</code> operation.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateModelFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_model::builders::CreateModelInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::create_model::CreateModelOutput,
crate::operation::create_model::CreateModelError,
> for CreateModelFluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::create_model::CreateModelOutput,
crate::operation::create_model::CreateModelError,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl CreateModelFluentBuilder {
/// Creates a new `CreateModelFluentBuilder`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the CreateModel as a reference.
pub fn as_input(&self) -> &crate::operation::create_model::builders::CreateModelInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::create_model::CreateModelOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_model::CreateModelError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::create_model::CreateModel::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::create_model::CreateModel::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::create_model::CreateModelOutput,
crate::operation::create_model::CreateModelError,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
self.set_config_override(::std::option::Option::Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>The name of the project in which you want to create a model version.</p>
pub fn project_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.project_name(input.into());
self
}
/// <p>The name of the project in which you want to create a model version.</p>
pub fn set_project_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_project_name(input);
self
}
/// <p>The name of the project in which you want to create a model version.</p>
pub fn get_project_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_project_name()
}
/// <p>A description for the version of the model.</p>
pub fn description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.description(input.into());
self
}
/// <p>A description for the version of the model.</p>
pub fn set_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_description(input);
self
}
/// <p>A description for the version of the model.</p>
pub fn get_description(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_description()
}
/// <p>ClientToken is an idempotency token that ensures a call to <code>CreateModel</code> completes only once. You choose the value to pass. For example, An issue might prevent you from getting a response from <code>CreateModel</code>. In this case, safely retry your call to <code>CreateModel</code> by using the same <code>ClientToken</code> parameter value.</p>
/// <p>If you don't supply a value for <code>ClientToken</code>, the AWS SDK you are using inserts a value for you. This prevents retries after a network error from starting multiple training jobs. You'll need to provide your own value for other use cases.</p>
/// <p>An error occurs if the other input parameters are not the same as in the first request. Using a different value for <code>ClientToken</code> is considered a new call to <code>CreateModel</code>. An idempotency token is active for 8 hours.</p>
pub fn client_token(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.client_token(input.into());
self
}
/// <p>ClientToken is an idempotency token that ensures a call to <code>CreateModel</code> completes only once. You choose the value to pass. For example, An issue might prevent you from getting a response from <code>CreateModel</code>. In this case, safely retry your call to <code>CreateModel</code> by using the same <code>ClientToken</code> parameter value.</p>
/// <p>If you don't supply a value for <code>ClientToken</code>, the AWS SDK you are using inserts a value for you. This prevents retries after a network error from starting multiple training jobs. You'll need to provide your own value for other use cases.</p>
/// <p>An error occurs if the other input parameters are not the same as in the first request. Using a different value for <code>ClientToken</code> is considered a new call to <code>CreateModel</code>. An idempotency token is active for 8 hours.</p>
pub fn set_client_token(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_client_token(input);
self
}
/// <p>ClientToken is an idempotency token that ensures a call to <code>CreateModel</code> completes only once. You choose the value to pass. For example, An issue might prevent you from getting a response from <code>CreateModel</code>. In this case, safely retry your call to <code>CreateModel</code> by using the same <code>ClientToken</code> parameter value.</p>
/// <p>If you don't supply a value for <code>ClientToken</code>, the AWS SDK you are using inserts a value for you. This prevents retries after a network error from starting multiple training jobs. You'll need to provide your own value for other use cases.</p>
/// <p>An error occurs if the other input parameters are not the same as in the first request. Using a different value for <code>ClientToken</code> is considered a new call to <code>CreateModel</code>. An idempotency token is active for 8 hours.</p>
pub fn get_client_token(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_client_token()
}
/// <p>The location where Amazon Lookout for Vision saves the training results.</p>
pub fn output_config(mut self, input: crate::types::OutputConfig) -> Self {
self.inner = self.inner.output_config(input);
self
}
/// <p>The location where Amazon Lookout for Vision saves the training results.</p>
pub fn set_output_config(mut self, input: ::std::option::Option<crate::types::OutputConfig>) -> Self {
self.inner = self.inner.set_output_config(input);
self
}
/// <p>The location where Amazon Lookout for Vision saves the training results.</p>
pub fn get_output_config(&self) -> &::std::option::Option<crate::types::OutputConfig> {
self.inner.get_output_config()
}
/// <p>The identifier for your AWS KMS key. The key is used to encrypt training and test images copied into the service for model training. Your source images are unaffected. If this parameter is not specified, the copied images are encrypted by a key that AWS owns and manages.</p>
pub fn kms_key_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.kms_key_id(input.into());
self
}
/// <p>The identifier for your AWS KMS key. The key is used to encrypt training and test images copied into the service for model training. Your source images are unaffected. If this parameter is not specified, the copied images are encrypted by a key that AWS owns and manages.</p>
pub fn set_kms_key_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_kms_key_id(input);
self
}
/// <p>The identifier for your AWS KMS key. The key is used to encrypt training and test images copied into the service for model training. Your source images are unaffected. If this parameter is not specified, the copied images are encrypted by a key that AWS owns and manages.</p>
pub fn get_kms_key_id(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_kms_key_id()
}
///
/// Appends an item to `Tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>A set of tags (key-value pairs) that you want to attach to the model.</p>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
self.inner = self.inner.tags(input);
self
}
/// <p>A set of tags (key-value pairs) that you want to attach to the model.</p>
pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
self.inner = self.inner.set_tags(input);
self
}
/// <p>A set of tags (key-value pairs) that you want to attach to the model.</p>
pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
self.inner.get_tags()
}
}