aws_sdk_lexruntime/operation/post_text/_post_text_output.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2#[allow(missing_docs)] // documentation missing in model
3#[non_exhaustive]
4#[derive(::std::clone::Clone, ::std::cmp::PartialEq)]
5pub struct PostTextOutput {
6 /// <p>The current user intent that Amazon Lex is aware of.</p>
7 pub intent_name: ::std::option::Option<::std::string::String>,
8 /// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p>
9 /// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
10 pub nlu_intent_confidence: ::std::option::Option<crate::types::IntentConfidence>,
11 /// <p>One to four alternative intents that may be applicable to the user's intent.</p>
12 /// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
13 pub alternative_intents: ::std::option::Option<::std::vec::Vec<crate::types::PredictedIntent>>,
14 /// <p>The intent slots that Amazon Lex detected from the user input in the conversation.</p>
15 /// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
16 pub slots: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
17 /// <p>A map of key-value pairs representing the session-specific context information.</p>
18 pub session_attributes: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
19 /// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
20 /// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
21 /// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
22 /// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
23 pub message: ::std::option::Option<::std::string::String>,
24 /// <p>The sentiment expressed in and utterance.</p>
25 /// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
26 pub sentiment_response: ::std::option::Option<crate::types::SentimentResponse>,
27 /// <p>The format of the response message. One of the following values:</p>
28 /// <ul>
29 /// <li>
30 /// <p><code>PlainText</code> - The message contains plain UTF-8 text.</p></li>
31 /// <li>
32 /// <p><code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p></li>
33 /// <li>
34 /// <p><code>SSML</code> - The message contains text formatted for voice output.</p></li>
35 /// <li>
36 /// <p><code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p></li>
37 /// </ul>
38 pub message_format: ::std::option::Option<crate::types::MessageFormatType>,
39 /// <p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface.</p>
40 /// <ul>
41 /// <li>
42 /// <p><code>ElicitIntent</code> - Amazon Lex wants to elicit user intent.</p>
43 /// <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p></li>
44 /// <li>
45 /// <p><code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.</p>
46 /// <p>For example, Amazon Lex wants user confirmation before fulfilling an intent.</p>
47 /// <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p></li>
48 /// <li>
49 /// <p><code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent.</p>
50 /// <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately.</p></li>
51 /// <li>
52 /// <p><code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent.</p></li>
53 /// <li>
54 /// <p><code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p></li>
55 /// <li>
56 /// <p><code>Failed</code> - Conveys that the conversation with the user failed.</p>
57 /// <p>This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent.</p></li>
58 /// </ul>
59 pub dialog_state: ::std::option::Option<crate::types::DialogState>,
60 /// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
61 pub slot_to_elicit: ::std::option::Option<::std::string::String>,
62 /// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function).</p>
63 pub response_card: ::std::option::Option<crate::types::ResponseCard>,
64 /// <p>A unique identifier for the session.</p>
65 pub session_id: ::std::option::Option<::std::string::String>,
66 /// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
67 pub bot_version: ::std::option::Option<::std::string::String>,
68 /// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
69 /// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
70 pub active_contexts: ::std::option::Option<::std::vec::Vec<crate::types::ActiveContext>>,
71 _request_id: Option<String>,
72}
73impl PostTextOutput {
74 /// <p>The current user intent that Amazon Lex is aware of.</p>
75 pub fn intent_name(&self) -> ::std::option::Option<&str> {
76 self.intent_name.as_deref()
77 }
78 /// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p>
79 /// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
80 pub fn nlu_intent_confidence(&self) -> ::std::option::Option<&crate::types::IntentConfidence> {
81 self.nlu_intent_confidence.as_ref()
82 }
83 /// <p>One to four alternative intents that may be applicable to the user's intent.</p>
84 /// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
85 ///
86 /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.alternative_intents.is_none()`.
87 pub fn alternative_intents(&self) -> &[crate::types::PredictedIntent] {
88 self.alternative_intents.as_deref().unwrap_or_default()
89 }
90 /// <p>The intent slots that Amazon Lex detected from the user input in the conversation.</p>
91 /// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
92 pub fn slots(&self) -> ::std::option::Option<&::std::collections::HashMap<::std::string::String, ::std::string::String>> {
93 self.slots.as_ref()
94 }
95 /// <p>A map of key-value pairs representing the session-specific context information.</p>
96 pub fn session_attributes(&self) -> ::std::option::Option<&::std::collections::HashMap<::std::string::String, ::std::string::String>> {
97 self.session_attributes.as_ref()
98 }
99 /// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
100 /// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
101 /// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
102 /// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
103 pub fn message(&self) -> ::std::option::Option<&str> {
104 self.message.as_deref()
105 }
106 /// <p>The sentiment expressed in and utterance.</p>
107 /// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
108 pub fn sentiment_response(&self) -> ::std::option::Option<&crate::types::SentimentResponse> {
109 self.sentiment_response.as_ref()
110 }
111 /// <p>The format of the response message. One of the following values:</p>
112 /// <ul>
113 /// <li>
114 /// <p><code>PlainText</code> - The message contains plain UTF-8 text.</p></li>
115 /// <li>
116 /// <p><code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p></li>
117 /// <li>
118 /// <p><code>SSML</code> - The message contains text formatted for voice output.</p></li>
119 /// <li>
120 /// <p><code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p></li>
121 /// </ul>
122 pub fn message_format(&self) -> ::std::option::Option<&crate::types::MessageFormatType> {
123 self.message_format.as_ref()
124 }
125 /// <p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface.</p>
126 /// <ul>
127 /// <li>
128 /// <p><code>ElicitIntent</code> - Amazon Lex wants to elicit user intent.</p>
129 /// <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p></li>
130 /// <li>
131 /// <p><code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.</p>
132 /// <p>For example, Amazon Lex wants user confirmation before fulfilling an intent.</p>
133 /// <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p></li>
134 /// <li>
135 /// <p><code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent.</p>
136 /// <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately.</p></li>
137 /// <li>
138 /// <p><code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent.</p></li>
139 /// <li>
140 /// <p><code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p></li>
141 /// <li>
142 /// <p><code>Failed</code> - Conveys that the conversation with the user failed.</p>
143 /// <p>This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent.</p></li>
144 /// </ul>
145 pub fn dialog_state(&self) -> ::std::option::Option<&crate::types::DialogState> {
146 self.dialog_state.as_ref()
147 }
148 /// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
149 pub fn slot_to_elicit(&self) -> ::std::option::Option<&str> {
150 self.slot_to_elicit.as_deref()
151 }
152 /// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function).</p>
153 pub fn response_card(&self) -> ::std::option::Option<&crate::types::ResponseCard> {
154 self.response_card.as_ref()
155 }
156 /// <p>A unique identifier for the session.</p>
157 pub fn session_id(&self) -> ::std::option::Option<&str> {
158 self.session_id.as_deref()
159 }
160 /// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
161 pub fn bot_version(&self) -> ::std::option::Option<&str> {
162 self.bot_version.as_deref()
163 }
164 /// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
165 /// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
166 ///
167 /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.active_contexts.is_none()`.
168 pub fn active_contexts(&self) -> &[crate::types::ActiveContext] {
169 self.active_contexts.as_deref().unwrap_or_default()
170 }
171}
172impl ::std::fmt::Debug for PostTextOutput {
173 fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
174 let mut formatter = f.debug_struct("PostTextOutput");
175 formatter.field("intent_name", &self.intent_name);
176 formatter.field("nlu_intent_confidence", &self.nlu_intent_confidence);
177 formatter.field("alternative_intents", &self.alternative_intents);
178 formatter.field("slots", &"*** Sensitive Data Redacted ***");
179 formatter.field("session_attributes", &"*** Sensitive Data Redacted ***");
180 formatter.field("message", &"*** Sensitive Data Redacted ***");
181 formatter.field("sentiment_response", &self.sentiment_response);
182 formatter.field("message_format", &self.message_format);
183 formatter.field("dialog_state", &self.dialog_state);
184 formatter.field("slot_to_elicit", &self.slot_to_elicit);
185 formatter.field("response_card", &self.response_card);
186 formatter.field("session_id", &self.session_id);
187 formatter.field("bot_version", &self.bot_version);
188 formatter.field("active_contexts", &"*** Sensitive Data Redacted ***");
189 formatter.field("_request_id", &self._request_id);
190 formatter.finish()
191 }
192}
193impl ::aws_types::request_id::RequestId for PostTextOutput {
194 fn request_id(&self) -> Option<&str> {
195 self._request_id.as_deref()
196 }
197}
198impl PostTextOutput {
199 /// Creates a new builder-style object to manufacture [`PostTextOutput`](crate::operation::post_text::PostTextOutput).
200 pub fn builder() -> crate::operation::post_text::builders::PostTextOutputBuilder {
201 crate::operation::post_text::builders::PostTextOutputBuilder::default()
202 }
203}
204
205/// A builder for [`PostTextOutput`](crate::operation::post_text::PostTextOutput).
206#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default)]
207#[non_exhaustive]
208pub struct PostTextOutputBuilder {
209 pub(crate) intent_name: ::std::option::Option<::std::string::String>,
210 pub(crate) nlu_intent_confidence: ::std::option::Option<crate::types::IntentConfidence>,
211 pub(crate) alternative_intents: ::std::option::Option<::std::vec::Vec<crate::types::PredictedIntent>>,
212 pub(crate) slots: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
213 pub(crate) session_attributes: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
214 pub(crate) message: ::std::option::Option<::std::string::String>,
215 pub(crate) sentiment_response: ::std::option::Option<crate::types::SentimentResponse>,
216 pub(crate) message_format: ::std::option::Option<crate::types::MessageFormatType>,
217 pub(crate) dialog_state: ::std::option::Option<crate::types::DialogState>,
218 pub(crate) slot_to_elicit: ::std::option::Option<::std::string::String>,
219 pub(crate) response_card: ::std::option::Option<crate::types::ResponseCard>,
220 pub(crate) session_id: ::std::option::Option<::std::string::String>,
221 pub(crate) bot_version: ::std::option::Option<::std::string::String>,
222 pub(crate) active_contexts: ::std::option::Option<::std::vec::Vec<crate::types::ActiveContext>>,
223 _request_id: Option<String>,
224}
225impl PostTextOutputBuilder {
226 /// <p>The current user intent that Amazon Lex is aware of.</p>
227 pub fn intent_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
228 self.intent_name = ::std::option::Option::Some(input.into());
229 self
230 }
231 /// <p>The current user intent that Amazon Lex is aware of.</p>
232 pub fn set_intent_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
233 self.intent_name = input;
234 self
235 }
236 /// <p>The current user intent that Amazon Lex is aware of.</p>
237 pub fn get_intent_name(&self) -> &::std::option::Option<::std::string::String> {
238 &self.intent_name
239 }
240 /// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p>
241 /// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
242 pub fn nlu_intent_confidence(mut self, input: crate::types::IntentConfidence) -> Self {
243 self.nlu_intent_confidence = ::std::option::Option::Some(input);
244 self
245 }
246 /// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p>
247 /// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
248 pub fn set_nlu_intent_confidence(mut self, input: ::std::option::Option<crate::types::IntentConfidence>) -> Self {
249 self.nlu_intent_confidence = input;
250 self
251 }
252 /// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p>
253 /// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
254 pub fn get_nlu_intent_confidence(&self) -> &::std::option::Option<crate::types::IntentConfidence> {
255 &self.nlu_intent_confidence
256 }
257 /// Appends an item to `alternative_intents`.
258 ///
259 /// To override the contents of this collection use [`set_alternative_intents`](Self::set_alternative_intents).
260 ///
261 /// <p>One to four alternative intents that may be applicable to the user's intent.</p>
262 /// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
263 pub fn alternative_intents(mut self, input: crate::types::PredictedIntent) -> Self {
264 let mut v = self.alternative_intents.unwrap_or_default();
265 v.push(input);
266 self.alternative_intents = ::std::option::Option::Some(v);
267 self
268 }
269 /// <p>One to four alternative intents that may be applicable to the user's intent.</p>
270 /// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
271 pub fn set_alternative_intents(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::PredictedIntent>>) -> Self {
272 self.alternative_intents = input;
273 self
274 }
275 /// <p>One to four alternative intents that may be applicable to the user's intent.</p>
276 /// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
277 pub fn get_alternative_intents(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::PredictedIntent>> {
278 &self.alternative_intents
279 }
280 /// Adds a key-value pair to `slots`.
281 ///
282 /// To override the contents of this collection use [`set_slots`](Self::set_slots).
283 ///
284 /// <p>The intent slots that Amazon Lex detected from the user input in the conversation.</p>
285 /// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
286 pub fn slots(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
287 let mut hash_map = self.slots.unwrap_or_default();
288 hash_map.insert(k.into(), v.into());
289 self.slots = ::std::option::Option::Some(hash_map);
290 self
291 }
292 /// <p>The intent slots that Amazon Lex detected from the user input in the conversation.</p>
293 /// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
294 pub fn set_slots(mut self, input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>) -> Self {
295 self.slots = input;
296 self
297 }
298 /// <p>The intent slots that Amazon Lex detected from the user input in the conversation.</p>
299 /// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
300 pub fn get_slots(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
301 &self.slots
302 }
303 /// Adds a key-value pair to `session_attributes`.
304 ///
305 /// To override the contents of this collection use [`set_session_attributes`](Self::set_session_attributes).
306 ///
307 /// <p>A map of key-value pairs representing the session-specific context information.</p>
308 pub fn session_attributes(
309 mut self,
310 k: impl ::std::convert::Into<::std::string::String>,
311 v: impl ::std::convert::Into<::std::string::String>,
312 ) -> Self {
313 let mut hash_map = self.session_attributes.unwrap_or_default();
314 hash_map.insert(k.into(), v.into());
315 self.session_attributes = ::std::option::Option::Some(hash_map);
316 self
317 }
318 /// <p>A map of key-value pairs representing the session-specific context information.</p>
319 pub fn set_session_attributes(
320 mut self,
321 input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
322 ) -> Self {
323 self.session_attributes = input;
324 self
325 }
326 /// <p>A map of key-value pairs representing the session-specific context information.</p>
327 pub fn get_session_attributes(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
328 &self.session_attributes
329 }
330 /// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
331 /// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
332 /// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
333 /// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
334 pub fn message(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
335 self.message = ::std::option::Option::Some(input.into());
336 self
337 }
338 /// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
339 /// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
340 /// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
341 /// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
342 pub fn set_message(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
343 self.message = input;
344 self
345 }
346 /// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
347 /// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
348 /// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
349 /// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
350 pub fn get_message(&self) -> &::std::option::Option<::std::string::String> {
351 &self.message
352 }
353 /// <p>The sentiment expressed in and utterance.</p>
354 /// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
355 pub fn sentiment_response(mut self, input: crate::types::SentimentResponse) -> Self {
356 self.sentiment_response = ::std::option::Option::Some(input);
357 self
358 }
359 /// <p>The sentiment expressed in and utterance.</p>
360 /// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
361 pub fn set_sentiment_response(mut self, input: ::std::option::Option<crate::types::SentimentResponse>) -> Self {
362 self.sentiment_response = input;
363 self
364 }
365 /// <p>The sentiment expressed in and utterance.</p>
366 /// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
367 pub fn get_sentiment_response(&self) -> &::std::option::Option<crate::types::SentimentResponse> {
368 &self.sentiment_response
369 }
370 /// <p>The format of the response message. One of the following values:</p>
371 /// <ul>
372 /// <li>
373 /// <p><code>PlainText</code> - The message contains plain UTF-8 text.</p></li>
374 /// <li>
375 /// <p><code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p></li>
376 /// <li>
377 /// <p><code>SSML</code> - The message contains text formatted for voice output.</p></li>
378 /// <li>
379 /// <p><code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p></li>
380 /// </ul>
381 pub fn message_format(mut self, input: crate::types::MessageFormatType) -> Self {
382 self.message_format = ::std::option::Option::Some(input);
383 self
384 }
385 /// <p>The format of the response message. One of the following values:</p>
386 /// <ul>
387 /// <li>
388 /// <p><code>PlainText</code> - The message contains plain UTF-8 text.</p></li>
389 /// <li>
390 /// <p><code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p></li>
391 /// <li>
392 /// <p><code>SSML</code> - The message contains text formatted for voice output.</p></li>
393 /// <li>
394 /// <p><code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p></li>
395 /// </ul>
396 pub fn set_message_format(mut self, input: ::std::option::Option<crate::types::MessageFormatType>) -> Self {
397 self.message_format = input;
398 self
399 }
400 /// <p>The format of the response message. One of the following values:</p>
401 /// <ul>
402 /// <li>
403 /// <p><code>PlainText</code> - The message contains plain UTF-8 text.</p></li>
404 /// <li>
405 /// <p><code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p></li>
406 /// <li>
407 /// <p><code>SSML</code> - The message contains text formatted for voice output.</p></li>
408 /// <li>
409 /// <p><code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p></li>
410 /// </ul>
411 pub fn get_message_format(&self) -> &::std::option::Option<crate::types::MessageFormatType> {
412 &self.message_format
413 }
414 /// <p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface.</p>
415 /// <ul>
416 /// <li>
417 /// <p><code>ElicitIntent</code> - Amazon Lex wants to elicit user intent.</p>
418 /// <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p></li>
419 /// <li>
420 /// <p><code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.</p>
421 /// <p>For example, Amazon Lex wants user confirmation before fulfilling an intent.</p>
422 /// <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p></li>
423 /// <li>
424 /// <p><code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent.</p>
425 /// <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately.</p></li>
426 /// <li>
427 /// <p><code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent.</p></li>
428 /// <li>
429 /// <p><code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p></li>
430 /// <li>
431 /// <p><code>Failed</code> - Conveys that the conversation with the user failed.</p>
432 /// <p>This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent.</p></li>
433 /// </ul>
434 pub fn dialog_state(mut self, input: crate::types::DialogState) -> Self {
435 self.dialog_state = ::std::option::Option::Some(input);
436 self
437 }
438 /// <p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface.</p>
439 /// <ul>
440 /// <li>
441 /// <p><code>ElicitIntent</code> - Amazon Lex wants to elicit user intent.</p>
442 /// <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p></li>
443 /// <li>
444 /// <p><code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.</p>
445 /// <p>For example, Amazon Lex wants user confirmation before fulfilling an intent.</p>
446 /// <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p></li>
447 /// <li>
448 /// <p><code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent.</p>
449 /// <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately.</p></li>
450 /// <li>
451 /// <p><code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent.</p></li>
452 /// <li>
453 /// <p><code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p></li>
454 /// <li>
455 /// <p><code>Failed</code> - Conveys that the conversation with the user failed.</p>
456 /// <p>This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent.</p></li>
457 /// </ul>
458 pub fn set_dialog_state(mut self, input: ::std::option::Option<crate::types::DialogState>) -> Self {
459 self.dialog_state = input;
460 self
461 }
462 /// <p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface.</p>
463 /// <ul>
464 /// <li>
465 /// <p><code>ElicitIntent</code> - Amazon Lex wants to elicit user intent.</p>
466 /// <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p></li>
467 /// <li>
468 /// <p><code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.</p>
469 /// <p>For example, Amazon Lex wants user confirmation before fulfilling an intent.</p>
470 /// <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p></li>
471 /// <li>
472 /// <p><code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent.</p>
473 /// <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately.</p></li>
474 /// <li>
475 /// <p><code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent.</p></li>
476 /// <li>
477 /// <p><code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p></li>
478 /// <li>
479 /// <p><code>Failed</code> - Conveys that the conversation with the user failed.</p>
480 /// <p>This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent.</p></li>
481 /// </ul>
482 pub fn get_dialog_state(&self) -> &::std::option::Option<crate::types::DialogState> {
483 &self.dialog_state
484 }
485 /// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
486 pub fn slot_to_elicit(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
487 self.slot_to_elicit = ::std::option::Option::Some(input.into());
488 self
489 }
490 /// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
491 pub fn set_slot_to_elicit(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
492 self.slot_to_elicit = input;
493 self
494 }
495 /// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
496 pub fn get_slot_to_elicit(&self) -> &::std::option::Option<::std::string::String> {
497 &self.slot_to_elicit
498 }
499 /// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function).</p>
500 pub fn response_card(mut self, input: crate::types::ResponseCard) -> Self {
501 self.response_card = ::std::option::Option::Some(input);
502 self
503 }
504 /// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function).</p>
505 pub fn set_response_card(mut self, input: ::std::option::Option<crate::types::ResponseCard>) -> Self {
506 self.response_card = input;
507 self
508 }
509 /// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function).</p>
510 pub fn get_response_card(&self) -> &::std::option::Option<crate::types::ResponseCard> {
511 &self.response_card
512 }
513 /// <p>A unique identifier for the session.</p>
514 pub fn session_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
515 self.session_id = ::std::option::Option::Some(input.into());
516 self
517 }
518 /// <p>A unique identifier for the session.</p>
519 pub fn set_session_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
520 self.session_id = input;
521 self
522 }
523 /// <p>A unique identifier for the session.</p>
524 pub fn get_session_id(&self) -> &::std::option::Option<::std::string::String> {
525 &self.session_id
526 }
527 /// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
528 pub fn bot_version(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
529 self.bot_version = ::std::option::Option::Some(input.into());
530 self
531 }
532 /// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
533 pub fn set_bot_version(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
534 self.bot_version = input;
535 self
536 }
537 /// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
538 pub fn get_bot_version(&self) -> &::std::option::Option<::std::string::String> {
539 &self.bot_version
540 }
541 /// Appends an item to `active_contexts`.
542 ///
543 /// To override the contents of this collection use [`set_active_contexts`](Self::set_active_contexts).
544 ///
545 /// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
546 /// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
547 pub fn active_contexts(mut self, input: crate::types::ActiveContext) -> Self {
548 let mut v = self.active_contexts.unwrap_or_default();
549 v.push(input);
550 self.active_contexts = ::std::option::Option::Some(v);
551 self
552 }
553 /// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
554 /// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
555 pub fn set_active_contexts(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::ActiveContext>>) -> Self {
556 self.active_contexts = input;
557 self
558 }
559 /// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
560 /// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
561 pub fn get_active_contexts(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::ActiveContext>> {
562 &self.active_contexts
563 }
564 pub(crate) fn _request_id(mut self, request_id: impl Into<String>) -> Self {
565 self._request_id = Some(request_id.into());
566 self
567 }
568
569 pub(crate) fn _set_request_id(&mut self, request_id: Option<String>) -> &mut Self {
570 self._request_id = request_id;
571 self
572 }
573 /// Consumes the builder and constructs a [`PostTextOutput`](crate::operation::post_text::PostTextOutput).
574 pub fn build(self) -> crate::operation::post_text::PostTextOutput {
575 crate::operation::post_text::PostTextOutput {
576 intent_name: self.intent_name,
577 nlu_intent_confidence: self.nlu_intent_confidence,
578 alternative_intents: self.alternative_intents,
579 slots: self.slots,
580 session_attributes: self.session_attributes,
581 message: self.message,
582 sentiment_response: self.sentiment_response,
583 message_format: self.message_format,
584 dialog_state: self.dialog_state,
585 slot_to_elicit: self.slot_to_elicit,
586 response_card: self.response_card,
587 session_id: self.session_id,
588 bot_version: self.bot_version,
589 active_contexts: self.active_contexts,
590 _request_id: self._request_id,
591 }
592 }
593}
594impl ::std::fmt::Debug for PostTextOutputBuilder {
595 fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
596 let mut formatter = f.debug_struct("PostTextOutputBuilder");
597 formatter.field("intent_name", &self.intent_name);
598 formatter.field("nlu_intent_confidence", &self.nlu_intent_confidence);
599 formatter.field("alternative_intents", &self.alternative_intents);
600 formatter.field("slots", &"*** Sensitive Data Redacted ***");
601 formatter.field("session_attributes", &"*** Sensitive Data Redacted ***");
602 formatter.field("message", &"*** Sensitive Data Redacted ***");
603 formatter.field("sentiment_response", &self.sentiment_response);
604 formatter.field("message_format", &self.message_format);
605 formatter.field("dialog_state", &self.dialog_state);
606 formatter.field("slot_to_elicit", &self.slot_to_elicit);
607 formatter.field("response_card", &self.response_card);
608 formatter.field("session_id", &self.session_id);
609 formatter.field("bot_version", &self.bot_version);
610 formatter.field("active_contexts", &"*** Sensitive Data Redacted ***");
611 formatter.field("_request_id", &self._request_id);
612 formatter.finish()
613 }
614}