1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
pub struct PutSessionOutput {
/// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
#[doc(hidden)]
pub content_type: std::option::Option<std::string::String>,
/// <p>The name of the current intent.</p>
#[doc(hidden)]
pub intent_name: std::option::Option<std::string::String>,
/// <p>Map of zero or more intent slots Amazon Lex detected from the user input during the conversation.</p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code> the default is <code>ORIGINAL_VALUE</code>. </p>
#[doc(hidden)]
pub slots: std::option::Option<std::string::String>,
/// <p>Map of key/value pairs representing session-specific context information.</p>
#[doc(hidden)]
pub session_attributes: std::option::Option<std::string::String>,
/// <p>The next message that should be presented to the user.</p>
/// <p>You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>message</code> field is null. You should use the <code>encodedMessage</code> field instead.</p>
#[deprecated(
note = "The message field is deprecated, use the encodedMessage field instead. The message field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
#[doc(hidden)]
pub message: std::option::Option<std::string::String>,
/// <p>The next message that should be presented to the user.</p>
/// <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
#[doc(hidden)]
pub encoded_message: std::option::Option<std::string::String>,
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
#[doc(hidden)]
pub message_format: std::option::Option<crate::model::MessageFormatType>,
/// <p></p>
/// <ul>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response to confirm the intent before fulfilling an intent.</p> </li>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent.</p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent.</p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user has failed. This can happen for various reasons, including the user does not provide an appropriate response to prompts from the service, or if the Lambda function fails to fulfill the intent.</p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has sucessfully fulfilled the intent.</p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p> </li>
/// </ul>
#[doc(hidden)]
pub dialog_state: std::option::Option<crate::model::DialogState>,
/// <p>If the <code>dialogState</code> is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
#[doc(hidden)]
pub slot_to_elicit: std::option::Option<std::string::String>,
/// <p>The audio version of the message to convey to the user.</p>
pub audio_stream: aws_smithy_http::byte_stream::ByteStream,
/// <p>A unique identifier for the session.</p>
#[doc(hidden)]
pub session_id: std::option::Option<std::string::String>,
/// <p>A list of active contexts for the session.</p>
#[doc(hidden)]
pub active_contexts: std::option::Option<std::string::String>,
}
impl PutSessionOutput {
/// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
pub fn content_type(&self) -> std::option::Option<&str> {
self.content_type.as_deref()
}
/// <p>The name of the current intent.</p>
pub fn intent_name(&self) -> std::option::Option<&str> {
self.intent_name.as_deref()
}
/// <p>Map of zero or more intent slots Amazon Lex detected from the user input during the conversation.</p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code> the default is <code>ORIGINAL_VALUE</code>. </p>
pub fn slots(&self) -> std::option::Option<&str> {
self.slots.as_deref()
}
/// <p>Map of key/value pairs representing session-specific context information.</p>
pub fn session_attributes(&self) -> std::option::Option<&str> {
self.session_attributes.as_deref()
}
/// <p>The next message that should be presented to the user.</p>
/// <p>You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>message</code> field is null. You should use the <code>encodedMessage</code> field instead.</p>
#[deprecated(
note = "The message field is deprecated, use the encodedMessage field instead. The message field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
pub fn message(&self) -> std::option::Option<&str> {
self.message.as_deref()
}
/// <p>The next message that should be presented to the user.</p>
/// <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
pub fn encoded_message(&self) -> std::option::Option<&str> {
self.encoded_message.as_deref()
}
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
pub fn message_format(&self) -> std::option::Option<&crate::model::MessageFormatType> {
self.message_format.as_ref()
}
/// <p></p>
/// <ul>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response to confirm the intent before fulfilling an intent.</p> </li>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent.</p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent.</p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user has failed. This can happen for various reasons, including the user does not provide an appropriate response to prompts from the service, or if the Lambda function fails to fulfill the intent.</p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has sucessfully fulfilled the intent.</p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p> </li>
/// </ul>
pub fn dialog_state(&self) -> std::option::Option<&crate::model::DialogState> {
self.dialog_state.as_ref()
}
/// <p>If the <code>dialogState</code> is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
pub fn slot_to_elicit(&self) -> std::option::Option<&str> {
self.slot_to_elicit.as_deref()
}
/// <p>The audio version of the message to convey to the user.</p>
pub fn audio_stream(&self) -> &aws_smithy_http::byte_stream::ByteStream {
&self.audio_stream
}
/// <p>A unique identifier for the session.</p>
pub fn session_id(&self) -> std::option::Option<&str> {
self.session_id.as_deref()
}
/// <p>A list of active contexts for the session.</p>
pub fn active_contexts(&self) -> std::option::Option<&str> {
self.active_contexts.as_deref()
}
}
impl std::fmt::Debug for PutSessionOutput {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut formatter = f.debug_struct("PutSessionOutput");
formatter.field("content_type", &self.content_type);
formatter.field("intent_name", &self.intent_name);
formatter.field("slots", &self.slots);
formatter.field("session_attributes", &self.session_attributes);
formatter.field("message", &"*** Sensitive Data Redacted ***");
formatter.field("encoded_message", &"*** Sensitive Data Redacted ***");
formatter.field("message_format", &self.message_format);
formatter.field("dialog_state", &self.dialog_state);
formatter.field("slot_to_elicit", &self.slot_to_elicit);
formatter.field("audio_stream", &self.audio_stream);
formatter.field("session_id", &self.session_id);
formatter.field("active_contexts", &"*** Sensitive Data Redacted ***");
formatter.finish()
}
}
/// See [`PutSessionOutput`](crate::output::PutSessionOutput).
pub mod put_session_output {
/// A builder for [`PutSessionOutput`](crate::output::PutSessionOutput).
#[derive(std::default::Default, std::fmt::Debug)]
pub struct Builder {
pub(crate) content_type: std::option::Option<std::string::String>,
pub(crate) intent_name: std::option::Option<std::string::String>,
pub(crate) slots: std::option::Option<std::string::String>,
pub(crate) session_attributes: std::option::Option<std::string::String>,
pub(crate) message: std::option::Option<std::string::String>,
pub(crate) encoded_message: std::option::Option<std::string::String>,
pub(crate) message_format: std::option::Option<crate::model::MessageFormatType>,
pub(crate) dialog_state: std::option::Option<crate::model::DialogState>,
pub(crate) slot_to_elicit: std::option::Option<std::string::String>,
pub(crate) audio_stream: std::option::Option<aws_smithy_http::byte_stream::ByteStream>,
pub(crate) session_id: std::option::Option<std::string::String>,
pub(crate) active_contexts: std::option::Option<std::string::String>,
}
impl Builder {
/// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
pub fn content_type(mut self, input: impl Into<std::string::String>) -> Self {
self.content_type = Some(input.into());
self
}
/// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
pub fn set_content_type(mut self, input: std::option::Option<std::string::String>) -> Self {
self.content_type = input;
self
}
/// <p>The name of the current intent.</p>
pub fn intent_name(mut self, input: impl Into<std::string::String>) -> Self {
self.intent_name = Some(input.into());
self
}
/// <p>The name of the current intent.</p>
pub fn set_intent_name(mut self, input: std::option::Option<std::string::String>) -> Self {
self.intent_name = input;
self
}
/// <p>Map of zero or more intent slots Amazon Lex detected from the user input during the conversation.</p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code> the default is <code>ORIGINAL_VALUE</code>. </p>
pub fn slots(mut self, input: impl Into<std::string::String>) -> Self {
self.slots = Some(input.into());
self
}
/// <p>Map of zero or more intent slots Amazon Lex detected from the user input during the conversation.</p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code> the default is <code>ORIGINAL_VALUE</code>. </p>
pub fn set_slots(mut self, input: std::option::Option<std::string::String>) -> Self {
self.slots = input;
self
}
/// <p>Map of key/value pairs representing session-specific context information.</p>
pub fn session_attributes(mut self, input: impl Into<std::string::String>) -> Self {
self.session_attributes = Some(input.into());
self
}
/// <p>Map of key/value pairs representing session-specific context information.</p>
pub fn set_session_attributes(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.session_attributes = input;
self
}
/// <p>The next message that should be presented to the user.</p>
/// <p>You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>message</code> field is null. You should use the <code>encodedMessage</code> field instead.</p>
#[deprecated(
note = "The message field is deprecated, use the encodedMessage field instead. The message field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
pub fn message(mut self, input: impl Into<std::string::String>) -> Self {
self.message = Some(input.into());
self
}
/// <p>The next message that should be presented to the user.</p>
/// <p>You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>message</code> field is null. You should use the <code>encodedMessage</code> field instead.</p>
#[deprecated(
note = "The message field is deprecated, use the encodedMessage field instead. The message field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
pub fn set_message(mut self, input: std::option::Option<std::string::String>) -> Self {
self.message = input;
self
}
/// <p>The next message that should be presented to the user.</p>
/// <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
pub fn encoded_message(mut self, input: impl Into<std::string::String>) -> Self {
self.encoded_message = Some(input.into());
self
}
/// <p>The next message that should be presented to the user.</p>
/// <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
pub fn set_encoded_message(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.encoded_message = input;
self
}
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
pub fn message_format(mut self, input: crate::model::MessageFormatType) -> Self {
self.message_format = Some(input);
self
}
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
pub fn set_message_format(
mut self,
input: std::option::Option<crate::model::MessageFormatType>,
) -> Self {
self.message_format = input;
self
}
/// <p></p>
/// <ul>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response to confirm the intent before fulfilling an intent.</p> </li>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent.</p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent.</p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user has failed. This can happen for various reasons, including the user does not provide an appropriate response to prompts from the service, or if the Lambda function fails to fulfill the intent.</p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has sucessfully fulfilled the intent.</p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p> </li>
/// </ul>
pub fn dialog_state(mut self, input: crate::model::DialogState) -> Self {
self.dialog_state = Some(input);
self
}
/// <p></p>
/// <ul>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response to confirm the intent before fulfilling an intent.</p> </li>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent.</p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent.</p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user has failed. This can happen for various reasons, including the user does not provide an appropriate response to prompts from the service, or if the Lambda function fails to fulfill the intent.</p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has sucessfully fulfilled the intent.</p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent.</p> </li>
/// </ul>
pub fn set_dialog_state(
mut self,
input: std::option::Option<crate::model::DialogState>,
) -> Self {
self.dialog_state = input;
self
}
/// <p>If the <code>dialogState</code> is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
pub fn slot_to_elicit(mut self, input: impl Into<std::string::String>) -> Self {
self.slot_to_elicit = Some(input.into());
self
}
/// <p>If the <code>dialogState</code> is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value.</p>
pub fn set_slot_to_elicit(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.slot_to_elicit = input;
self
}
/// <p>The audio version of the message to convey to the user.</p>
pub fn audio_stream(mut self, input: aws_smithy_http::byte_stream::ByteStream) -> Self {
self.audio_stream = Some(input);
self
}
/// <p>The audio version of the message to convey to the user.</p>
pub fn set_audio_stream(
mut self,
input: std::option::Option<aws_smithy_http::byte_stream::ByteStream>,
) -> Self {
self.audio_stream = input;
self
}
/// <p>A unique identifier for the session.</p>
pub fn session_id(mut self, input: impl Into<std::string::String>) -> Self {
self.session_id = Some(input.into());
self
}
/// <p>A unique identifier for the session.</p>
pub fn set_session_id(mut self, input: std::option::Option<std::string::String>) -> Self {
self.session_id = input;
self
}
/// <p>A list of active contexts for the session.</p>
pub fn active_contexts(mut self, input: impl Into<std::string::String>) -> Self {
self.active_contexts = Some(input.into());
self
}
/// <p>A list of active contexts for the session.</p>
pub fn set_active_contexts(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.active_contexts = input;
self
}
/// Consumes the builder and constructs a [`PutSessionOutput`](crate::output::PutSessionOutput).
pub fn build(self) -> crate::output::PutSessionOutput {
crate::output::PutSessionOutput {
content_type: self.content_type,
intent_name: self.intent_name,
slots: self.slots,
session_attributes: self.session_attributes,
message: self.message,
encoded_message: self.encoded_message,
message_format: self.message_format,
dialog_state: self.dialog_state,
slot_to_elicit: self.slot_to_elicit,
audio_stream: self.audio_stream.unwrap_or_default(),
session_id: self.session_id,
active_contexts: self.active_contexts,
}
}
}
}
impl PutSessionOutput {
/// Creates a new builder-style object to manufacture [`PutSessionOutput`](crate::output::PutSessionOutput).
pub fn builder() -> crate::output::put_session_output::Builder {
crate::output::put_session_output::Builder::default()
}
}
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(std::clone::Clone, std::cmp::PartialEq)]
pub struct PostTextOutput {
/// <p>The current user intent that Amazon Lex is aware of.</p>
#[doc(hidden)]
pub intent_name: std::option::Option<std::string::String>,
/// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p>
/// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
#[doc(hidden)]
pub nlu_intent_confidence: std::option::Option<crate::model::IntentConfidence>,
/// <p>One to four alternative intents that may be applicable to the user's intent.</p>
/// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
#[doc(hidden)]
pub alternative_intents: std::option::Option<std::vec::Vec<crate::model::PredictedIntent>>,
/// <p> The intent slots that Amazon Lex detected from the user input in the conversation. </p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
#[doc(hidden)]
pub slots:
std::option::Option<std::collections::HashMap<std::string::String, std::string::String>>,
/// <p>A map of key-value pairs representing the session-specific context information.</p>
#[doc(hidden)]
pub session_attributes:
std::option::Option<std::collections::HashMap<std::string::String, std::string::String>>,
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
#[doc(hidden)]
pub message: std::option::Option<std::string::String>,
/// <p>The sentiment expressed in and utterance.</p>
/// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
#[doc(hidden)]
pub sentiment_response: std::option::Option<crate::model::SentimentResponse>,
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
#[doc(hidden)]
pub message_format: std::option::Option<crate::model::MessageFormatType>,
/// <p> Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p>
/// <ul>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit user intent. </p> <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p> </li>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p> For example, Amazon Lex wants user confirmation before fulfilling an intent. </p> <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent. </p> <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent. </p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent. </p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent. </p> </li>
/// </ul>
#[doc(hidden)]
pub dialog_state: std::option::Option<crate::model::DialogState>,
/// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
#[doc(hidden)]
pub slot_to_elicit: std::option::Option<std::string::String>,
/// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function). </p>
#[doc(hidden)]
pub response_card: std::option::Option<crate::model::ResponseCard>,
/// <p>A unique identifier for the session.</p>
#[doc(hidden)]
pub session_id: std::option::Option<std::string::String>,
/// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
#[doc(hidden)]
pub bot_version: std::option::Option<std::string::String>,
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
#[doc(hidden)]
pub active_contexts: std::option::Option<std::vec::Vec<crate::model::ActiveContext>>,
}
impl PostTextOutput {
/// <p>The current user intent that Amazon Lex is aware of.</p>
pub fn intent_name(&self) -> std::option::Option<&str> {
self.intent_name.as_deref()
}
/// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p>
/// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
pub fn nlu_intent_confidence(&self) -> std::option::Option<&crate::model::IntentConfidence> {
self.nlu_intent_confidence.as_ref()
}
/// <p>One to four alternative intents that may be applicable to the user's intent.</p>
/// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
pub fn alternative_intents(&self) -> std::option::Option<&[crate::model::PredictedIntent]> {
self.alternative_intents.as_deref()
}
/// <p> The intent slots that Amazon Lex detected from the user input in the conversation. </p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
pub fn slots(
&self,
) -> std::option::Option<&std::collections::HashMap<std::string::String, std::string::String>>
{
self.slots.as_ref()
}
/// <p>A map of key-value pairs representing the session-specific context information.</p>
pub fn session_attributes(
&self,
) -> std::option::Option<&std::collections::HashMap<std::string::String, std::string::String>>
{
self.session_attributes.as_ref()
}
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
pub fn message(&self) -> std::option::Option<&str> {
self.message.as_deref()
}
/// <p>The sentiment expressed in and utterance.</p>
/// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
pub fn sentiment_response(&self) -> std::option::Option<&crate::model::SentimentResponse> {
self.sentiment_response.as_ref()
}
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
pub fn message_format(&self) -> std::option::Option<&crate::model::MessageFormatType> {
self.message_format.as_ref()
}
/// <p> Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p>
/// <ul>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit user intent. </p> <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p> </li>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p> For example, Amazon Lex wants user confirmation before fulfilling an intent. </p> <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent. </p> <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent. </p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent. </p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent. </p> </li>
/// </ul>
pub fn dialog_state(&self) -> std::option::Option<&crate::model::DialogState> {
self.dialog_state.as_ref()
}
/// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
pub fn slot_to_elicit(&self) -> std::option::Option<&str> {
self.slot_to_elicit.as_deref()
}
/// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function). </p>
pub fn response_card(&self) -> std::option::Option<&crate::model::ResponseCard> {
self.response_card.as_ref()
}
/// <p>A unique identifier for the session.</p>
pub fn session_id(&self) -> std::option::Option<&str> {
self.session_id.as_deref()
}
/// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
pub fn bot_version(&self) -> std::option::Option<&str> {
self.bot_version.as_deref()
}
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
pub fn active_contexts(&self) -> std::option::Option<&[crate::model::ActiveContext]> {
self.active_contexts.as_deref()
}
}
impl std::fmt::Debug for PostTextOutput {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut formatter = f.debug_struct("PostTextOutput");
formatter.field("intent_name", &self.intent_name);
formatter.field("nlu_intent_confidence", &self.nlu_intent_confidence);
formatter.field("alternative_intents", &self.alternative_intents);
formatter.field("slots", &"*** Sensitive Data Redacted ***");
formatter.field("session_attributes", &"*** Sensitive Data Redacted ***");
formatter.field("message", &"*** Sensitive Data Redacted ***");
formatter.field("sentiment_response", &self.sentiment_response);
formatter.field("message_format", &self.message_format);
formatter.field("dialog_state", &self.dialog_state);
formatter.field("slot_to_elicit", &self.slot_to_elicit);
formatter.field("response_card", &self.response_card);
formatter.field("session_id", &self.session_id);
formatter.field("bot_version", &self.bot_version);
formatter.field("active_contexts", &"*** Sensitive Data Redacted ***");
formatter.finish()
}
}
/// See [`PostTextOutput`](crate::output::PostTextOutput).
pub mod post_text_output {
/// A builder for [`PostTextOutput`](crate::output::PostTextOutput).
#[derive(std::default::Default, std::clone::Clone, std::cmp::PartialEq, std::fmt::Debug)]
pub struct Builder {
pub(crate) intent_name: std::option::Option<std::string::String>,
pub(crate) nlu_intent_confidence: std::option::Option<crate::model::IntentConfidence>,
pub(crate) alternative_intents:
std::option::Option<std::vec::Vec<crate::model::PredictedIntent>>,
pub(crate) slots: std::option::Option<
std::collections::HashMap<std::string::String, std::string::String>,
>,
pub(crate) session_attributes: std::option::Option<
std::collections::HashMap<std::string::String, std::string::String>,
>,
pub(crate) message: std::option::Option<std::string::String>,
pub(crate) sentiment_response: std::option::Option<crate::model::SentimentResponse>,
pub(crate) message_format: std::option::Option<crate::model::MessageFormatType>,
pub(crate) dialog_state: std::option::Option<crate::model::DialogState>,
pub(crate) slot_to_elicit: std::option::Option<std::string::String>,
pub(crate) response_card: std::option::Option<crate::model::ResponseCard>,
pub(crate) session_id: std::option::Option<std::string::String>,
pub(crate) bot_version: std::option::Option<std::string::String>,
pub(crate) active_contexts: std::option::Option<std::vec::Vec<crate::model::ActiveContext>>,
}
impl Builder {
/// <p>The current user intent that Amazon Lex is aware of.</p>
pub fn intent_name(mut self, input: impl Into<std::string::String>) -> Self {
self.intent_name = Some(input.into());
self
}
/// <p>The current user intent that Amazon Lex is aware of.</p>
pub fn set_intent_name(mut self, input: std::option::Option<std::string::String>) -> Self {
self.intent_name = input;
self
}
/// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p>
/// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
pub fn nlu_intent_confidence(mut self, input: crate::model::IntentConfidence) -> Self {
self.nlu_intent_confidence = Some(input);
self
}
/// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0. For more information, see <a href="https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html">Confidence Scores</a>.</p>
/// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex.</p>
pub fn set_nlu_intent_confidence(
mut self,
input: std::option::Option<crate::model::IntentConfidence>,
) -> Self {
self.nlu_intent_confidence = input;
self
}
/// Appends an item to `alternative_intents`.
///
/// To override the contents of this collection use [`set_alternative_intents`](Self::set_alternative_intents).
///
/// <p>One to four alternative intents that may be applicable to the user's intent.</p>
/// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
pub fn alternative_intents(mut self, input: crate::model::PredictedIntent) -> Self {
let mut v = self.alternative_intents.unwrap_or_default();
v.push(input);
self.alternative_intents = Some(v);
self
}
/// <p>One to four alternative intents that may be applicable to the user's intent.</p>
/// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
pub fn set_alternative_intents(
mut self,
input: std::option::Option<std::vec::Vec<crate::model::PredictedIntent>>,
) -> Self {
self.alternative_intents = input;
self
}
/// Adds a key-value pair to `slots`.
///
/// To override the contents of this collection use [`set_slots`](Self::set_slots).
///
/// <p> The intent slots that Amazon Lex detected from the user input in the conversation. </p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
pub fn slots(
mut self,
k: impl Into<std::string::String>,
v: impl Into<std::string::String>,
) -> Self {
let mut hash_map = self.slots.unwrap_or_default();
hash_map.insert(k.into(), v.into());
self.slots = Some(hash_map);
self
}
/// <p> The intent slots that Amazon Lex detected from the user input in the conversation. </p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
pub fn set_slots(
mut self,
input: std::option::Option<
std::collections::HashMap<std::string::String, std::string::String>,
>,
) -> Self {
self.slots = input;
self
}
/// Adds a key-value pair to `session_attributes`.
///
/// To override the contents of this collection use [`set_session_attributes`](Self::set_session_attributes).
///
/// <p>A map of key-value pairs representing the session-specific context information.</p>
pub fn session_attributes(
mut self,
k: impl Into<std::string::String>,
v: impl Into<std::string::String>,
) -> Self {
let mut hash_map = self.session_attributes.unwrap_or_default();
hash_map.insert(k.into(), v.into());
self.session_attributes = Some(hash_map);
self
}
/// <p>A map of key-value pairs representing the session-specific context information.</p>
pub fn set_session_attributes(
mut self,
input: std::option::Option<
std::collections::HashMap<std::string::String, std::string::String>,
>,
) -> Self {
self.session_attributes = input;
self
}
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
pub fn message(mut self, input: impl Into<std::string::String>) -> Self {
self.message = Some(input.into());
self
}
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
pub fn set_message(mut self, input: std::option::Option<std::string::String>) -> Self {
self.message = input;
self
}
/// <p>The sentiment expressed in and utterance.</p>
/// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
pub fn sentiment_response(mut self, input: crate::model::SentimentResponse) -> Self {
self.sentiment_response = Some(input);
self
}
/// <p>The sentiment expressed in and utterance.</p>
/// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
pub fn set_sentiment_response(
mut self,
input: std::option::Option<crate::model::SentimentResponse>,
) -> Self {
self.sentiment_response = input;
self
}
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
pub fn message_format(mut self, input: crate::model::MessageFormatType) -> Self {
self.message_format = Some(input);
self
}
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
pub fn set_message_format(
mut self,
input: std::option::Option<crate::model::MessageFormatType>,
) -> Self {
self.message_format = input;
self
}
/// <p> Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p>
/// <ul>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit user intent. </p> <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p> </li>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p> For example, Amazon Lex wants user confirmation before fulfilling an intent. </p> <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent. </p> <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent. </p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent. </p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent. </p> </li>
/// </ul>
pub fn dialog_state(mut self, input: crate::model::DialogState) -> Self {
self.dialog_state = Some(input);
self
}
/// <p> Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p>
/// <ul>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit user intent. </p> <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p> </li>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p> For example, Amazon Lex wants user confirmation before fulfilling an intent. </p> <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent. </p> <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent. </p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent. </p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent. </p> </li>
/// </ul>
pub fn set_dialog_state(
mut self,
input: std::option::Option<crate::model::DialogState>,
) -> Self {
self.dialog_state = input;
self
}
/// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
pub fn slot_to_elicit(mut self, input: impl Into<std::string::String>) -> Self {
self.slot_to_elicit = Some(input.into());
self
}
/// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
pub fn set_slot_to_elicit(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.slot_to_elicit = input;
self
}
/// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function). </p>
pub fn response_card(mut self, input: crate::model::ResponseCard) -> Self {
self.response_card = Some(input);
self
}
/// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function). </p>
pub fn set_response_card(
mut self,
input: std::option::Option<crate::model::ResponseCard>,
) -> Self {
self.response_card = input;
self
}
/// <p>A unique identifier for the session.</p>
pub fn session_id(mut self, input: impl Into<std::string::String>) -> Self {
self.session_id = Some(input.into());
self
}
/// <p>A unique identifier for the session.</p>
pub fn set_session_id(mut self, input: std::option::Option<std::string::String>) -> Self {
self.session_id = input;
self
}
/// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
pub fn bot_version(mut self, input: impl Into<std::string::String>) -> Self {
self.bot_version = Some(input.into());
self
}
/// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
pub fn set_bot_version(mut self, input: std::option::Option<std::string::String>) -> Self {
self.bot_version = input;
self
}
/// Appends an item to `active_contexts`.
///
/// To override the contents of this collection use [`set_active_contexts`](Self::set_active_contexts).
///
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
pub fn active_contexts(mut self, input: crate::model::ActiveContext) -> Self {
let mut v = self.active_contexts.unwrap_or_default();
v.push(input);
self.active_contexts = Some(v);
self
}
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
pub fn set_active_contexts(
mut self,
input: std::option::Option<std::vec::Vec<crate::model::ActiveContext>>,
) -> Self {
self.active_contexts = input;
self
}
/// Consumes the builder and constructs a [`PostTextOutput`](crate::output::PostTextOutput).
pub fn build(self) -> crate::output::PostTextOutput {
crate::output::PostTextOutput {
intent_name: self.intent_name,
nlu_intent_confidence: self.nlu_intent_confidence,
alternative_intents: self.alternative_intents,
slots: self.slots,
session_attributes: self.session_attributes,
message: self.message,
sentiment_response: self.sentiment_response,
message_format: self.message_format,
dialog_state: self.dialog_state,
slot_to_elicit: self.slot_to_elicit,
response_card: self.response_card,
session_id: self.session_id,
bot_version: self.bot_version,
active_contexts: self.active_contexts,
}
}
}
}
impl PostTextOutput {
/// Creates a new builder-style object to manufacture [`PostTextOutput`](crate::output::PostTextOutput).
pub fn builder() -> crate::output::post_text_output::Builder {
crate::output::post_text_output::Builder::default()
}
}
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
pub struct PostContentOutput {
/// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
#[doc(hidden)]
pub content_type: std::option::Option<std::string::String>,
/// <p>Current user intent that Amazon Lex is aware of.</p>
#[doc(hidden)]
pub intent_name: std::option::Option<std::string::String>,
/// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0.</p>
/// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex. </p>
#[doc(hidden)]
pub nlu_intent_confidence: std::option::Option<std::string::String>,
/// <p>One to four alternative intents that may be applicable to the user's intent.</p>
/// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
#[doc(hidden)]
pub alternative_intents: std::option::Option<std::string::String>,
/// <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from the user input during the conversation. The field is base-64 encoded.</p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
#[doc(hidden)]
pub slots: std::option::Option<std::string::String>,
/// <p> Map of key/value pairs representing the session-specific context information. </p>
#[doc(hidden)]
pub session_attributes: std::option::Option<std::string::String>,
/// <p>The sentiment expressed in an utterance.</p>
/// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
#[doc(hidden)]
pub sentiment_response: std::option::Option<std::string::String>,
/// <p>You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>message</code> field is null. You should use the <code>encodedMessage</code> field instead.</p>
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
#[deprecated(
note = "The message field is deprecated, use the encodedMessage field instead. The message field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
#[doc(hidden)]
pub message: std::option::Option<std::string::String>,
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
/// <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
#[doc(hidden)]
pub encoded_message: std::option::Option<std::string::String>,
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
#[doc(hidden)]
pub message_format: std::option::Option<crate::model::MessageFormatType>,
/// <p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p>
/// <ul>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent. Consider the following examples: </p> <p> For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialog state. </p> </li>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an intent. Instead of a simple "yes" or "no" response, a user might respond with additional information. For example, "yes, but make it a thick crust pizza" or "no, I want to order a drink." Amazon Lex can process such additional information (in these examples, update the crust type slot or change the intent from OrderPizza to OrderDrink). </p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has successfully fulfilled the intent. </p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the request. </p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons, including that the user does not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or if the Lambda function fails to fulfill the intent. </p> </li>
/// </ul>
#[doc(hidden)]
pub dialog_state: std::option::Option<crate::model::DialogState>,
/// <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
#[doc(hidden)]
pub slot_to_elicit: std::option::Option<std::string::String>,
/// <p>The text used to process the request.</p>
/// <p>You can use this field only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>inputTranscript</code> field is null. You should use the <code>encodedInputTranscript</code> field instead.</p>
/// <p>If the input was an audio stream, the <code>inputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p>
#[deprecated(
note = "The inputTranscript field is deprecated, use the encodedInputTranscript field instead. The inputTranscript field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
#[doc(hidden)]
pub input_transcript: std::option::Option<std::string::String>,
/// <p>The text used to process the request.</p>
/// <p>If the input was an audio stream, the <code>encodedInputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p>
/// <p>The <code>encodedInputTranscript</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
#[doc(hidden)]
pub encoded_input_transcript: std::option::Option<std::string::String>,
/// <p>The prompt (or statement) to convey to the user. This is based on the bot configuration and context. For example, if Amazon Lex did not understand the user intent, it sends the <code>clarificationPrompt</code> configured for the bot. If the intent requires confirmation before taking the fulfillment action, it sends the <code>confirmationPrompt</code>. Another example: Suppose that the Lambda function successfully fulfilled the intent, and sent a message to convey to the user. Then Amazon Lex sends that message in the response. </p>
pub audio_stream: aws_smithy_http::byte_stream::ByteStream,
/// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
#[doc(hidden)]
pub bot_version: std::option::Option<std::string::String>,
/// <p>The unique identifier for the session.</p>
#[doc(hidden)]
pub session_id: std::option::Option<std::string::String>,
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
#[doc(hidden)]
pub active_contexts: std::option::Option<std::string::String>,
}
impl PostContentOutput {
/// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
pub fn content_type(&self) -> std::option::Option<&str> {
self.content_type.as_deref()
}
/// <p>Current user intent that Amazon Lex is aware of.</p>
pub fn intent_name(&self) -> std::option::Option<&str> {
self.intent_name.as_deref()
}
/// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0.</p>
/// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex. </p>
pub fn nlu_intent_confidence(&self) -> std::option::Option<&str> {
self.nlu_intent_confidence.as_deref()
}
/// <p>One to four alternative intents that may be applicable to the user's intent.</p>
/// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
pub fn alternative_intents(&self) -> std::option::Option<&str> {
self.alternative_intents.as_deref()
}
/// <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from the user input during the conversation. The field is base-64 encoded.</p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
pub fn slots(&self) -> std::option::Option<&str> {
self.slots.as_deref()
}
/// <p> Map of key/value pairs representing the session-specific context information. </p>
pub fn session_attributes(&self) -> std::option::Option<&str> {
self.session_attributes.as_deref()
}
/// <p>The sentiment expressed in an utterance.</p>
/// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
pub fn sentiment_response(&self) -> std::option::Option<&str> {
self.sentiment_response.as_deref()
}
/// <p>You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>message</code> field is null. You should use the <code>encodedMessage</code> field instead.</p>
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
#[deprecated(
note = "The message field is deprecated, use the encodedMessage field instead. The message field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
pub fn message(&self) -> std::option::Option<&str> {
self.message.as_deref()
}
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
/// <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
pub fn encoded_message(&self) -> std::option::Option<&str> {
self.encoded_message.as_deref()
}
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
pub fn message_format(&self) -> std::option::Option<&crate::model::MessageFormatType> {
self.message_format.as_ref()
}
/// <p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p>
/// <ul>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent. Consider the following examples: </p> <p> For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialog state. </p> </li>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an intent. Instead of a simple "yes" or "no" response, a user might respond with additional information. For example, "yes, but make it a thick crust pizza" or "no, I want to order a drink." Amazon Lex can process such additional information (in these examples, update the crust type slot or change the intent from OrderPizza to OrderDrink). </p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has successfully fulfilled the intent. </p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the request. </p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons, including that the user does not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or if the Lambda function fails to fulfill the intent. </p> </li>
/// </ul>
pub fn dialog_state(&self) -> std::option::Option<&crate::model::DialogState> {
self.dialog_state.as_ref()
}
/// <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
pub fn slot_to_elicit(&self) -> std::option::Option<&str> {
self.slot_to_elicit.as_deref()
}
/// <p>The text used to process the request.</p>
/// <p>You can use this field only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>inputTranscript</code> field is null. You should use the <code>encodedInputTranscript</code> field instead.</p>
/// <p>If the input was an audio stream, the <code>inputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p>
#[deprecated(
note = "The inputTranscript field is deprecated, use the encodedInputTranscript field instead. The inputTranscript field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
pub fn input_transcript(&self) -> std::option::Option<&str> {
self.input_transcript.as_deref()
}
/// <p>The text used to process the request.</p>
/// <p>If the input was an audio stream, the <code>encodedInputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p>
/// <p>The <code>encodedInputTranscript</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
pub fn encoded_input_transcript(&self) -> std::option::Option<&str> {
self.encoded_input_transcript.as_deref()
}
/// <p>The prompt (or statement) to convey to the user. This is based on the bot configuration and context. For example, if Amazon Lex did not understand the user intent, it sends the <code>clarificationPrompt</code> configured for the bot. If the intent requires confirmation before taking the fulfillment action, it sends the <code>confirmationPrompt</code>. Another example: Suppose that the Lambda function successfully fulfilled the intent, and sent a message to convey to the user. Then Amazon Lex sends that message in the response. </p>
pub fn audio_stream(&self) -> &aws_smithy_http::byte_stream::ByteStream {
&self.audio_stream
}
/// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
pub fn bot_version(&self) -> std::option::Option<&str> {
self.bot_version.as_deref()
}
/// <p>The unique identifier for the session.</p>
pub fn session_id(&self) -> std::option::Option<&str> {
self.session_id.as_deref()
}
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
pub fn active_contexts(&self) -> std::option::Option<&str> {
self.active_contexts.as_deref()
}
}
impl std::fmt::Debug for PostContentOutput {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut formatter = f.debug_struct("PostContentOutput");
formatter.field("content_type", &self.content_type);
formatter.field("intent_name", &self.intent_name);
formatter.field("nlu_intent_confidence", &self.nlu_intent_confidence);
formatter.field("alternative_intents", &self.alternative_intents);
formatter.field("slots", &self.slots);
formatter.field("session_attributes", &self.session_attributes);
formatter.field("sentiment_response", &self.sentiment_response);
formatter.field("message", &"*** Sensitive Data Redacted ***");
formatter.field("encoded_message", &"*** Sensitive Data Redacted ***");
formatter.field("message_format", &self.message_format);
formatter.field("dialog_state", &self.dialog_state);
formatter.field("slot_to_elicit", &self.slot_to_elicit);
formatter.field("input_transcript", &self.input_transcript);
formatter.field(
"encoded_input_transcript",
&"*** Sensitive Data Redacted ***",
);
formatter.field("audio_stream", &self.audio_stream);
formatter.field("bot_version", &self.bot_version);
formatter.field("session_id", &self.session_id);
formatter.field("active_contexts", &"*** Sensitive Data Redacted ***");
formatter.finish()
}
}
/// See [`PostContentOutput`](crate::output::PostContentOutput).
pub mod post_content_output {
/// A builder for [`PostContentOutput`](crate::output::PostContentOutput).
#[derive(std::default::Default, std::fmt::Debug)]
pub struct Builder {
pub(crate) content_type: std::option::Option<std::string::String>,
pub(crate) intent_name: std::option::Option<std::string::String>,
pub(crate) nlu_intent_confidence: std::option::Option<std::string::String>,
pub(crate) alternative_intents: std::option::Option<std::string::String>,
pub(crate) slots: std::option::Option<std::string::String>,
pub(crate) session_attributes: std::option::Option<std::string::String>,
pub(crate) sentiment_response: std::option::Option<std::string::String>,
pub(crate) message: std::option::Option<std::string::String>,
pub(crate) encoded_message: std::option::Option<std::string::String>,
pub(crate) message_format: std::option::Option<crate::model::MessageFormatType>,
pub(crate) dialog_state: std::option::Option<crate::model::DialogState>,
pub(crate) slot_to_elicit: std::option::Option<std::string::String>,
pub(crate) input_transcript: std::option::Option<std::string::String>,
pub(crate) encoded_input_transcript: std::option::Option<std::string::String>,
pub(crate) audio_stream: std::option::Option<aws_smithy_http::byte_stream::ByteStream>,
pub(crate) bot_version: std::option::Option<std::string::String>,
pub(crate) session_id: std::option::Option<std::string::String>,
pub(crate) active_contexts: std::option::Option<std::string::String>,
}
impl Builder {
/// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
pub fn content_type(mut self, input: impl Into<std::string::String>) -> Self {
self.content_type = Some(input.into());
self
}
/// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p>
pub fn set_content_type(mut self, input: std::option::Option<std::string::String>) -> Self {
self.content_type = input;
self
}
/// <p>Current user intent that Amazon Lex is aware of.</p>
pub fn intent_name(mut self, input: impl Into<std::string::String>) -> Self {
self.intent_name = Some(input.into());
self
}
/// <p>Current user intent that Amazon Lex is aware of.</p>
pub fn set_intent_name(mut self, input: std::option::Option<std::string::String>) -> Self {
self.intent_name = input;
self
}
/// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0.</p>
/// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex. </p>
pub fn nlu_intent_confidence(mut self, input: impl Into<std::string::String>) -> Self {
self.nlu_intent_confidence = Some(input.into());
self
}
/// <p>Provides a score that indicates how confident Amazon Lex is that the returned intent is the one that matches the user's intent. The score is between 0.0 and 1.0.</p>
/// <p>The score is a relative score, not an absolute score. The score may change based on improvements to Amazon Lex. </p>
pub fn set_nlu_intent_confidence(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.nlu_intent_confidence = input;
self
}
/// <p>One to four alternative intents that may be applicable to the user's intent.</p>
/// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
pub fn alternative_intents(mut self, input: impl Into<std::string::String>) -> Self {
self.alternative_intents = Some(input.into());
self
}
/// <p>One to four alternative intents that may be applicable to the user's intent.</p>
/// <p>Each alternative includes a score that indicates how confident Amazon Lex is that the intent matches the user's intent. The intents are sorted by the confidence score.</p>
pub fn set_alternative_intents(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.alternative_intents = input;
self
}
/// <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from the user input during the conversation. The field is base-64 encoded.</p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
pub fn slots(mut self, input: impl Into<std::string::String>) -> Self {
self.slots = Some(input.into());
self
}
/// <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from the user input during the conversation. The field is base-64 encoded.</p>
/// <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p>
pub fn set_slots(mut self, input: std::option::Option<std::string::String>) -> Self {
self.slots = input;
self
}
/// <p> Map of key/value pairs representing the session-specific context information. </p>
pub fn session_attributes(mut self, input: impl Into<std::string::String>) -> Self {
self.session_attributes = Some(input.into());
self
}
/// <p> Map of key/value pairs representing the session-specific context information. </p>
pub fn set_session_attributes(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.session_attributes = input;
self
}
/// <p>The sentiment expressed in an utterance.</p>
/// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
pub fn sentiment_response(mut self, input: impl Into<std::string::String>) -> Self {
self.sentiment_response = Some(input.into());
self
}
/// <p>The sentiment expressed in an utterance.</p>
/// <p>When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this field contains the result of the analysis.</p>
pub fn set_sentiment_response(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.sentiment_response = input;
self
}
/// <p>You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>message</code> field is null. You should use the <code>encodedMessage</code> field instead.</p>
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
#[deprecated(
note = "The message field is deprecated, use the encodedMessage field instead. The message field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
pub fn message(mut self, input: impl Into<std::string::String>) -> Self {
self.message = Some(input.into());
self
}
/// <p>You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>message</code> field is null. You should use the <code>encodedMessage</code> field instead.</p>
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
#[deprecated(
note = "The message field is deprecated, use the encodedMessage field instead. The message field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
pub fn set_message(mut self, input: std::option::Option<std::string::String>) -> Self {
self.message = input;
self
}
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
/// <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
pub fn encoded_message(mut self, input: impl Into<std::string::String>) -> Self {
self.encoded_message = Some(input.into());
self
}
/// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p>
/// <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p>
/// <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <code>msg-prompts-formats</code>.</p>
/// <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p>
/// <p>The <code>encodedMessage</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
pub fn set_encoded_message(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.encoded_message = input;
self
}
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
pub fn message_format(mut self, input: crate::model::MessageFormatType) -> Self {
self.message_format = Some(input);
self
}
/// <p>The format of the response message. One of the following values:</p>
/// <ul>
/// <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li>
/// <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li>
/// <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li>
/// <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li>
/// </ul>
pub fn set_message_format(
mut self,
input: std::option::Option<crate::model::MessageFormatType>,
) -> Self {
self.message_format = input;
self
}
/// <p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p>
/// <ul>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent. Consider the following examples: </p> <p> For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialog state. </p> </li>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an intent. Instead of a simple "yes" or "no" response, a user might respond with additional information. For example, "yes, but make it a thick crust pizza" or "no, I want to order a drink." Amazon Lex can process such additional information (in these examples, update the crust type slot or change the intent from OrderPizza to OrderDrink). </p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has successfully fulfilled the intent. </p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the request. </p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons, including that the user does not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or if the Lambda function fails to fulfill the intent. </p> </li>
/// </ul>
pub fn dialog_state(mut self, input: crate::model::DialogState) -> Self {
self.dialog_state = Some(input);
self
}
/// <p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p>
/// <ul>
/// <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent. Consider the following examples: </p> <p> For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialog state. </p> </li>
/// <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an intent. Instead of a simple "yes" or "no" response, a user might respond with additional information. For example, "yes, but make it a thick crust pizza" or "no, I want to order a drink." Amazon Lex can process such additional information (in these examples, update the crust type slot or change the intent from OrderPizza to OrderDrink). </p> </li>
/// <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li>
/// <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has successfully fulfilled the intent. </p> </li>
/// <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the request. </p> </li>
/// <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons, including that the user does not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or if the Lambda function fails to fulfill the intent. </p> </li>
/// </ul>
pub fn set_dialog_state(
mut self,
input: std::option::Option<crate::model::DialogState>,
) -> Self {
self.dialog_state = input;
self
}
/// <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
pub fn slot_to_elicit(mut self, input: impl Into<std::string::String>) -> Self {
self.slot_to_elicit = Some(input.into());
self
}
/// <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p>
pub fn set_slot_to_elicit(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.slot_to_elicit = input;
self
}
/// <p>The text used to process the request.</p>
/// <p>You can use this field only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>inputTranscript</code> field is null. You should use the <code>encodedInputTranscript</code> field instead.</p>
/// <p>If the input was an audio stream, the <code>inputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p>
#[deprecated(
note = "The inputTranscript field is deprecated, use the encodedInputTranscript field instead. The inputTranscript field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
pub fn input_transcript(mut self, input: impl Into<std::string::String>) -> Self {
self.input_transcript = Some(input.into());
self
}
/// <p>The text used to process the request.</p>
/// <p>You can use this field only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR, and it-IT locales. In all other locales, the <code>inputTranscript</code> field is null. You should use the <code>encodedInputTranscript</code> field instead.</p>
/// <p>If the input was an audio stream, the <code>inputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p>
#[deprecated(
note = "The inputTranscript field is deprecated, use the encodedInputTranscript field instead. The inputTranscript field is available only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-FR and it-IT locales."
)]
pub fn set_input_transcript(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.input_transcript = input;
self
}
/// <p>The text used to process the request.</p>
/// <p>If the input was an audio stream, the <code>encodedInputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p>
/// <p>The <code>encodedInputTranscript</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
pub fn encoded_input_transcript(mut self, input: impl Into<std::string::String>) -> Self {
self.encoded_input_transcript = Some(input.into());
self
}
/// <p>The text used to process the request.</p>
/// <p>If the input was an audio stream, the <code>encodedInputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p>
/// <p>The <code>encodedInputTranscript</code> field is base-64 encoded. You must decode the field before you can use the value.</p>
pub fn set_encoded_input_transcript(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.encoded_input_transcript = input;
self
}
/// <p>The prompt (or statement) to convey to the user. This is based on the bot configuration and context. For example, if Amazon Lex did not understand the user intent, it sends the <code>clarificationPrompt</code> configured for the bot. If the intent requires confirmation before taking the fulfillment action, it sends the <code>confirmationPrompt</code>. Another example: Suppose that the Lambda function successfully fulfilled the intent, and sent a message to convey to the user. Then Amazon Lex sends that message in the response. </p>
pub fn audio_stream(mut self, input: aws_smithy_http::byte_stream::ByteStream) -> Self {
self.audio_stream = Some(input);
self
}
/// <p>The prompt (or statement) to convey to the user. This is based on the bot configuration and context. For example, if Amazon Lex did not understand the user intent, it sends the <code>clarificationPrompt</code> configured for the bot. If the intent requires confirmation before taking the fulfillment action, it sends the <code>confirmationPrompt</code>. Another example: Suppose that the Lambda function successfully fulfilled the intent, and sent a message to convey to the user. Then Amazon Lex sends that message in the response. </p>
pub fn set_audio_stream(
mut self,
input: std::option::Option<aws_smithy_http::byte_stream::ByteStream>,
) -> Self {
self.audio_stream = input;
self
}
/// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
pub fn bot_version(mut self, input: impl Into<std::string::String>) -> Self {
self.bot_version = Some(input.into());
self
}
/// <p>The version of the bot that responded to the conversation. You can use this information to help determine if one version of a bot is performing better than another version.</p>
pub fn set_bot_version(mut self, input: std::option::Option<std::string::String>) -> Self {
self.bot_version = input;
self
}
/// <p>The unique identifier for the session.</p>
pub fn session_id(mut self, input: impl Into<std::string::String>) -> Self {
self.session_id = Some(input.into());
self
}
/// <p>The unique identifier for the session.</p>
pub fn set_session_id(mut self, input: std::option::Option<std::string::String>) -> Self {
self.session_id = input;
self
}
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
pub fn active_contexts(mut self, input: impl Into<std::string::String>) -> Self {
self.active_contexts = Some(input.into());
self
}
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
pub fn set_active_contexts(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.active_contexts = input;
self
}
/// Consumes the builder and constructs a [`PostContentOutput`](crate::output::PostContentOutput).
pub fn build(self) -> crate::output::PostContentOutput {
crate::output::PostContentOutput {
content_type: self.content_type,
intent_name: self.intent_name,
nlu_intent_confidence: self.nlu_intent_confidence,
alternative_intents: self.alternative_intents,
slots: self.slots,
session_attributes: self.session_attributes,
sentiment_response: self.sentiment_response,
message: self.message,
encoded_message: self.encoded_message,
message_format: self.message_format,
dialog_state: self.dialog_state,
slot_to_elicit: self.slot_to_elicit,
input_transcript: self.input_transcript,
encoded_input_transcript: self.encoded_input_transcript,
audio_stream: self.audio_stream.unwrap_or_default(),
bot_version: self.bot_version,
session_id: self.session_id,
active_contexts: self.active_contexts,
}
}
}
}
impl PostContentOutput {
/// Creates a new builder-style object to manufacture [`PostContentOutput`](crate::output::PostContentOutput).
pub fn builder() -> crate::output::post_content_output::Builder {
crate::output::post_content_output::Builder::default()
}
}
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(std::clone::Clone, std::cmp::PartialEq)]
pub struct GetSessionOutput {
/// <p>An array of information about the intents used in the session. The array can contain a maximum of three summaries. If more than three intents are used in the session, the <code>recentIntentSummaryView</code> operation contains information about the last three intents used.</p>
/// <p>If you set the <code>checkpointLabelFilter</code> parameter in the request, the array contains only the intents with the specified label.</p>
#[doc(hidden)]
pub recent_intent_summary_view: std::option::Option<std::vec::Vec<crate::model::IntentSummary>>,
/// <p>Map of key/value pairs representing the session-specific context information. It contains application information passed between Amazon Lex and a client application.</p>
#[doc(hidden)]
pub session_attributes:
std::option::Option<std::collections::HashMap<std::string::String, std::string::String>>,
/// <p>A unique identifier for the session.</p>
#[doc(hidden)]
pub session_id: std::option::Option<std::string::String>,
/// <p>Describes the current state of the bot.</p>
#[doc(hidden)]
pub dialog_action: std::option::Option<crate::model::DialogAction>,
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
#[doc(hidden)]
pub active_contexts: std::option::Option<std::vec::Vec<crate::model::ActiveContext>>,
}
impl GetSessionOutput {
/// <p>An array of information about the intents used in the session. The array can contain a maximum of three summaries. If more than three intents are used in the session, the <code>recentIntentSummaryView</code> operation contains information about the last three intents used.</p>
/// <p>If you set the <code>checkpointLabelFilter</code> parameter in the request, the array contains only the intents with the specified label.</p>
pub fn recent_intent_summary_view(
&self,
) -> std::option::Option<&[crate::model::IntentSummary]> {
self.recent_intent_summary_view.as_deref()
}
/// <p>Map of key/value pairs representing the session-specific context information. It contains application information passed between Amazon Lex and a client application.</p>
pub fn session_attributes(
&self,
) -> std::option::Option<&std::collections::HashMap<std::string::String, std::string::String>>
{
self.session_attributes.as_ref()
}
/// <p>A unique identifier for the session.</p>
pub fn session_id(&self) -> std::option::Option<&str> {
self.session_id.as_deref()
}
/// <p>Describes the current state of the bot.</p>
pub fn dialog_action(&self) -> std::option::Option<&crate::model::DialogAction> {
self.dialog_action.as_ref()
}
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
pub fn active_contexts(&self) -> std::option::Option<&[crate::model::ActiveContext]> {
self.active_contexts.as_deref()
}
}
impl std::fmt::Debug for GetSessionOutput {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut formatter = f.debug_struct("GetSessionOutput");
formatter.field(
"recent_intent_summary_view",
&self.recent_intent_summary_view,
);
formatter.field("session_attributes", &"*** Sensitive Data Redacted ***");
formatter.field("session_id", &self.session_id);
formatter.field("dialog_action", &self.dialog_action);
formatter.field("active_contexts", &"*** Sensitive Data Redacted ***");
formatter.finish()
}
}
/// See [`GetSessionOutput`](crate::output::GetSessionOutput).
pub mod get_session_output {
/// A builder for [`GetSessionOutput`](crate::output::GetSessionOutput).
#[derive(std::default::Default, std::clone::Clone, std::cmp::PartialEq, std::fmt::Debug)]
pub struct Builder {
pub(crate) recent_intent_summary_view:
std::option::Option<std::vec::Vec<crate::model::IntentSummary>>,
pub(crate) session_attributes: std::option::Option<
std::collections::HashMap<std::string::String, std::string::String>,
>,
pub(crate) session_id: std::option::Option<std::string::String>,
pub(crate) dialog_action: std::option::Option<crate::model::DialogAction>,
pub(crate) active_contexts: std::option::Option<std::vec::Vec<crate::model::ActiveContext>>,
}
impl Builder {
/// Appends an item to `recent_intent_summary_view`.
///
/// To override the contents of this collection use [`set_recent_intent_summary_view`](Self::set_recent_intent_summary_view).
///
/// <p>An array of information about the intents used in the session. The array can contain a maximum of three summaries. If more than three intents are used in the session, the <code>recentIntentSummaryView</code> operation contains information about the last three intents used.</p>
/// <p>If you set the <code>checkpointLabelFilter</code> parameter in the request, the array contains only the intents with the specified label.</p>
pub fn recent_intent_summary_view(mut self, input: crate::model::IntentSummary) -> Self {
let mut v = self.recent_intent_summary_view.unwrap_or_default();
v.push(input);
self.recent_intent_summary_view = Some(v);
self
}
/// <p>An array of information about the intents used in the session. The array can contain a maximum of three summaries. If more than three intents are used in the session, the <code>recentIntentSummaryView</code> operation contains information about the last three intents used.</p>
/// <p>If you set the <code>checkpointLabelFilter</code> parameter in the request, the array contains only the intents with the specified label.</p>
pub fn set_recent_intent_summary_view(
mut self,
input: std::option::Option<std::vec::Vec<crate::model::IntentSummary>>,
) -> Self {
self.recent_intent_summary_view = input;
self
}
/// Adds a key-value pair to `session_attributes`.
///
/// To override the contents of this collection use [`set_session_attributes`](Self::set_session_attributes).
///
/// <p>Map of key/value pairs representing the session-specific context information. It contains application information passed between Amazon Lex and a client application.</p>
pub fn session_attributes(
mut self,
k: impl Into<std::string::String>,
v: impl Into<std::string::String>,
) -> Self {
let mut hash_map = self.session_attributes.unwrap_or_default();
hash_map.insert(k.into(), v.into());
self.session_attributes = Some(hash_map);
self
}
/// <p>Map of key/value pairs representing the session-specific context information. It contains application information passed between Amazon Lex and a client application.</p>
pub fn set_session_attributes(
mut self,
input: std::option::Option<
std::collections::HashMap<std::string::String, std::string::String>,
>,
) -> Self {
self.session_attributes = input;
self
}
/// <p>A unique identifier for the session.</p>
pub fn session_id(mut self, input: impl Into<std::string::String>) -> Self {
self.session_id = Some(input.into());
self
}
/// <p>A unique identifier for the session.</p>
pub fn set_session_id(mut self, input: std::option::Option<std::string::String>) -> Self {
self.session_id = input;
self
}
/// <p>Describes the current state of the bot.</p>
pub fn dialog_action(mut self, input: crate::model::DialogAction) -> Self {
self.dialog_action = Some(input);
self
}
/// <p>Describes the current state of the bot.</p>
pub fn set_dialog_action(
mut self,
input: std::option::Option<crate::model::DialogAction>,
) -> Self {
self.dialog_action = input;
self
}
/// Appends an item to `active_contexts`.
///
/// To override the contents of this collection use [`set_active_contexts`](Self::set_active_contexts).
///
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
pub fn active_contexts(mut self, input: crate::model::ActiveContext) -> Self {
let mut v = self.active_contexts.unwrap_or_default();
v.push(input);
self.active_contexts = Some(v);
self
}
/// <p>A list of active contexts for the session. A context can be set when an intent is fulfilled or by calling the <code>PostContent</code>, <code>PostText</code>, or <code>PutSession</code> operation.</p>
/// <p>You can use a context to control the intents that can follow up an intent, or to modify the operation of your application.</p>
pub fn set_active_contexts(
mut self,
input: std::option::Option<std::vec::Vec<crate::model::ActiveContext>>,
) -> Self {
self.active_contexts = input;
self
}
/// Consumes the builder and constructs a [`GetSessionOutput`](crate::output::GetSessionOutput).
pub fn build(self) -> crate::output::GetSessionOutput {
crate::output::GetSessionOutput {
recent_intent_summary_view: self.recent_intent_summary_view,
session_attributes: self.session_attributes,
session_id: self.session_id,
dialog_action: self.dialog_action,
active_contexts: self.active_contexts,
}
}
}
}
impl GetSessionOutput {
/// Creates a new builder-style object to manufacture [`GetSessionOutput`](crate::output::GetSessionOutput).
pub fn builder() -> crate::output::get_session_output::Builder {
crate::output::get_session_output::Builder::default()
}
}
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(std::clone::Clone, std::cmp::PartialEq)]
pub struct DeleteSessionOutput {
/// <p>The name of the bot associated with the session data.</p>
#[doc(hidden)]
pub bot_name: std::option::Option<std::string::String>,
/// <p>The alias in use for the bot associated with the session data.</p>
#[doc(hidden)]
pub bot_alias: std::option::Option<std::string::String>,
/// <p>The ID of the client application user.</p>
#[doc(hidden)]
pub user_id: std::option::Option<std::string::String>,
/// <p>The unique identifier for the session.</p>
#[doc(hidden)]
pub session_id: std::option::Option<std::string::String>,
}
impl DeleteSessionOutput {
/// <p>The name of the bot associated with the session data.</p>
pub fn bot_name(&self) -> std::option::Option<&str> {
self.bot_name.as_deref()
}
/// <p>The alias in use for the bot associated with the session data.</p>
pub fn bot_alias(&self) -> std::option::Option<&str> {
self.bot_alias.as_deref()
}
/// <p>The ID of the client application user.</p>
pub fn user_id(&self) -> std::option::Option<&str> {
self.user_id.as_deref()
}
/// <p>The unique identifier for the session.</p>
pub fn session_id(&self) -> std::option::Option<&str> {
self.session_id.as_deref()
}
}
impl std::fmt::Debug for DeleteSessionOutput {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut formatter = f.debug_struct("DeleteSessionOutput");
formatter.field("bot_name", &self.bot_name);
formatter.field("bot_alias", &self.bot_alias);
formatter.field("user_id", &self.user_id);
formatter.field("session_id", &self.session_id);
formatter.finish()
}
}
/// See [`DeleteSessionOutput`](crate::output::DeleteSessionOutput).
pub mod delete_session_output {
/// A builder for [`DeleteSessionOutput`](crate::output::DeleteSessionOutput).
#[derive(std::default::Default, std::clone::Clone, std::cmp::PartialEq, std::fmt::Debug)]
pub struct Builder {
pub(crate) bot_name: std::option::Option<std::string::String>,
pub(crate) bot_alias: std::option::Option<std::string::String>,
pub(crate) user_id: std::option::Option<std::string::String>,
pub(crate) session_id: std::option::Option<std::string::String>,
}
impl Builder {
/// <p>The name of the bot associated with the session data.</p>
pub fn bot_name(mut self, input: impl Into<std::string::String>) -> Self {
self.bot_name = Some(input.into());
self
}
/// <p>The name of the bot associated with the session data.</p>
pub fn set_bot_name(mut self, input: std::option::Option<std::string::String>) -> Self {
self.bot_name = input;
self
}
/// <p>The alias in use for the bot associated with the session data.</p>
pub fn bot_alias(mut self, input: impl Into<std::string::String>) -> Self {
self.bot_alias = Some(input.into());
self
}
/// <p>The alias in use for the bot associated with the session data.</p>
pub fn set_bot_alias(mut self, input: std::option::Option<std::string::String>) -> Self {
self.bot_alias = input;
self
}
/// <p>The ID of the client application user.</p>
pub fn user_id(mut self, input: impl Into<std::string::String>) -> Self {
self.user_id = Some(input.into());
self
}
/// <p>The ID of the client application user.</p>
pub fn set_user_id(mut self, input: std::option::Option<std::string::String>) -> Self {
self.user_id = input;
self
}
/// <p>The unique identifier for the session.</p>
pub fn session_id(mut self, input: impl Into<std::string::String>) -> Self {
self.session_id = Some(input.into());
self
}
/// <p>The unique identifier for the session.</p>
pub fn set_session_id(mut self, input: std::option::Option<std::string::String>) -> Self {
self.session_id = input;
self
}
/// Consumes the builder and constructs a [`DeleteSessionOutput`](crate::output::DeleteSessionOutput).
pub fn build(self) -> crate::output::DeleteSessionOutput {
crate::output::DeleteSessionOutput {
bot_name: self.bot_name,
bot_alias: self.bot_alias,
user_id: self.user_id,
session_id: self.session_id,
}
}
}
}
impl DeleteSessionOutput {
/// Creates a new builder-style object to manufacture [`DeleteSessionOutput`](crate::output::DeleteSessionOutput).
pub fn builder() -> crate::output::delete_session_output::Builder {
crate::output::delete_session_output::Builder::default()
}
}