aws_sdk_glue/operation/start_job_run/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::start_job_run::_start_job_run_output::StartJobRunOutputBuilder;
3
4pub use crate::operation::start_job_run::_start_job_run_input::StartJobRunInputBuilder;
5
6impl crate::operation::start_job_run::builders::StartJobRunInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::start_job_run::StartJobRunOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::start_job_run::StartJobRunError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.start_job_run();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `StartJobRun`.
24///
25/// <p>Starts a job run using a job definition.</p>
26#[derive(::std::clone::Clone, ::std::fmt::Debug)]
27pub struct StartJobRunFluentBuilder {
28 handle: ::std::sync::Arc<crate::client::Handle>,
29 inner: crate::operation::start_job_run::builders::StartJobRunInputBuilder,
30 config_override: ::std::option::Option<crate::config::Builder>,
31}
32impl
33 crate::client::customize::internal::CustomizableSend<
34 crate::operation::start_job_run::StartJobRunOutput,
35 crate::operation::start_job_run::StartJobRunError,
36 > for StartJobRunFluentBuilder
37{
38 fn send(
39 self,
40 config_override: crate::config::Builder,
41 ) -> crate::client::customize::internal::BoxFuture<
42 crate::client::customize::internal::SendResult<
43 crate::operation::start_job_run::StartJobRunOutput,
44 crate::operation::start_job_run::StartJobRunError,
45 >,
46 > {
47 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
48 }
49}
50impl StartJobRunFluentBuilder {
51 /// Creates a new `StartJobRunFluentBuilder`.
52 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
53 Self {
54 handle,
55 inner: ::std::default::Default::default(),
56 config_override: ::std::option::Option::None,
57 }
58 }
59 /// Access the StartJobRun as a reference.
60 pub fn as_input(&self) -> &crate::operation::start_job_run::builders::StartJobRunInputBuilder {
61 &self.inner
62 }
63 /// Sends the request and returns the response.
64 ///
65 /// If an error occurs, an `SdkError` will be returned with additional details that
66 /// can be matched against.
67 ///
68 /// By default, any retryable failures will be retried twice. Retry behavior
69 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
70 /// set when configuring the client.
71 pub async fn send(
72 self,
73 ) -> ::std::result::Result<
74 crate::operation::start_job_run::StartJobRunOutput,
75 ::aws_smithy_runtime_api::client::result::SdkError<
76 crate::operation::start_job_run::StartJobRunError,
77 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
78 >,
79 > {
80 let input = self
81 .inner
82 .build()
83 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
84 let runtime_plugins = crate::operation::start_job_run::StartJobRun::operation_runtime_plugins(
85 self.handle.runtime_plugins.clone(),
86 &self.handle.conf,
87 self.config_override,
88 );
89 crate::operation::start_job_run::StartJobRun::orchestrate(&runtime_plugins, input).await
90 }
91
92 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
93 pub fn customize(
94 self,
95 ) -> crate::client::customize::CustomizableOperation<
96 crate::operation::start_job_run::StartJobRunOutput,
97 crate::operation::start_job_run::StartJobRunError,
98 Self,
99 > {
100 crate::client::customize::CustomizableOperation::new(self)
101 }
102 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
103 self.set_config_override(::std::option::Option::Some(config_override.into()));
104 self
105 }
106
107 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
108 self.config_override = config_override;
109 self
110 }
111 /// <p>The name of the job definition to use.</p>
112 pub fn job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
113 self.inner = self.inner.job_name(input.into());
114 self
115 }
116 /// <p>The name of the job definition to use.</p>
117 pub fn set_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
118 self.inner = self.inner.set_job_name(input);
119 self
120 }
121 /// <p>The name of the job definition to use.</p>
122 pub fn get_job_name(&self) -> &::std::option::Option<::std::string::String> {
123 self.inner.get_job_name()
124 }
125 /// <p>Specifies whether job run queuing is enabled for the job run.</p>
126 /// <p>A value of true means job run queuing is enabled for the job run. If false or not populated, the job run will not be considered for queueing.</p>
127 pub fn job_run_queuing_enabled(mut self, input: bool) -> Self {
128 self.inner = self.inner.job_run_queuing_enabled(input);
129 self
130 }
131 /// <p>Specifies whether job run queuing is enabled for the job run.</p>
132 /// <p>A value of true means job run queuing is enabled for the job run. If false or not populated, the job run will not be considered for queueing.</p>
133 pub fn set_job_run_queuing_enabled(mut self, input: ::std::option::Option<bool>) -> Self {
134 self.inner = self.inner.set_job_run_queuing_enabled(input);
135 self
136 }
137 /// <p>Specifies whether job run queuing is enabled for the job run.</p>
138 /// <p>A value of true means job run queuing is enabled for the job run. If false or not populated, the job run will not be considered for queueing.</p>
139 pub fn get_job_run_queuing_enabled(&self) -> &::std::option::Option<bool> {
140 self.inner.get_job_run_queuing_enabled()
141 }
142 /// <p>The ID of a previous <code>JobRun</code> to retry.</p>
143 pub fn job_run_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
144 self.inner = self.inner.job_run_id(input.into());
145 self
146 }
147 /// <p>The ID of a previous <code>JobRun</code> to retry.</p>
148 pub fn set_job_run_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
149 self.inner = self.inner.set_job_run_id(input);
150 self
151 }
152 /// <p>The ID of a previous <code>JobRun</code> to retry.</p>
153 pub fn get_job_run_id(&self) -> &::std::option::Option<::std::string::String> {
154 self.inner.get_job_run_id()
155 }
156 ///
157 /// Adds a key-value pair to `Arguments`.
158 ///
159 /// To override the contents of this collection use [`set_arguments`](Self::set_arguments).
160 ///
161 /// <p>The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself.</p>
162 /// <p>You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.</p>
163 /// <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
164 /// <p>For information about how to specify and consume your own Job arguments, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html">Calling Glue APIs in Python</a> topic in the developer guide.</p>
165 /// <p>For information about the arguments you can provide to this field when configuring Spark jobs, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html">Special Parameters Used by Glue</a> topic in the developer guide.</p>
166 /// <p>For information about the arguments you can provide to this field when configuring Ray jobs, see <a href="https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html">Using job parameters in Ray jobs</a> in the developer guide.</p>
167 pub fn arguments(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
168 self.inner = self.inner.arguments(k.into(), v.into());
169 self
170 }
171 /// <p>The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself.</p>
172 /// <p>You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.</p>
173 /// <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
174 /// <p>For information about how to specify and consume your own Job arguments, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html">Calling Glue APIs in Python</a> topic in the developer guide.</p>
175 /// <p>For information about the arguments you can provide to this field when configuring Spark jobs, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html">Special Parameters Used by Glue</a> topic in the developer guide.</p>
176 /// <p>For information about the arguments you can provide to this field when configuring Ray jobs, see <a href="https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html">Using job parameters in Ray jobs</a> in the developer guide.</p>
177 pub fn set_arguments(mut self, input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>) -> Self {
178 self.inner = self.inner.set_arguments(input);
179 self
180 }
181 /// <p>The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself.</p>
182 /// <p>You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.</p>
183 /// <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
184 /// <p>For information about how to specify and consume your own Job arguments, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html">Calling Glue APIs in Python</a> topic in the developer guide.</p>
185 /// <p>For information about the arguments you can provide to this field when configuring Spark jobs, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html">Special Parameters Used by Glue</a> topic in the developer guide.</p>
186 /// <p>For information about the arguments you can provide to this field when configuring Ray jobs, see <a href="https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html">Using job parameters in Ray jobs</a> in the developer guide.</p>
187 pub fn get_arguments(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
188 self.inner.get_arguments()
189 }
190 /// <p>This field is deprecated. Use <code>MaxCapacity</code> instead.</p>
191 /// <p>The number of Glue data processing units (DPUs) to allocate to this JobRun. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/">Glue pricing page</a>.</p>
192 #[deprecated(note = "This property is deprecated, use MaxCapacity instead.")]
193 pub fn allocated_capacity(mut self, input: i32) -> Self {
194 self.inner = self.inner.allocated_capacity(input);
195 self
196 }
197 /// <p>This field is deprecated. Use <code>MaxCapacity</code> instead.</p>
198 /// <p>The number of Glue data processing units (DPUs) to allocate to this JobRun. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/">Glue pricing page</a>.</p>
199 #[deprecated(note = "This property is deprecated, use MaxCapacity instead.")]
200 pub fn set_allocated_capacity(mut self, input: ::std::option::Option<i32>) -> Self {
201 self.inner = self.inner.set_allocated_capacity(input);
202 self
203 }
204 /// <p>This field is deprecated. Use <code>MaxCapacity</code> instead.</p>
205 /// <p>The number of Glue data processing units (DPUs) to allocate to this JobRun. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/">Glue pricing page</a>.</p>
206 #[deprecated(note = "This property is deprecated, use MaxCapacity instead.")]
207 pub fn get_allocated_capacity(&self) -> &::std::option::Option<i32> {
208 self.inner.get_allocated_capacity()
209 }
210 /// <p>The <code>JobRun</code> timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters <code>TIMEOUT</code> status. This value overrides the timeout value set in the parent job.</p>
211 /// <p>Jobs must have timeout values less than 7 days or 10080 minutes. Otherwise, the jobs will throw an exception.</p>
212 /// <p>When the value is left blank, the timeout is defaulted to 2880 minutes.</p>
213 /// <p>Any existing Glue jobs that had a timeout value greater than 7 days will be defaulted to 7 days. For instance if you have specified a timeout of 20 days for a batch job, it will be stopped on the 7th day.</p>
214 /// <p>For streaming jobs, if you have set up a maintenance window, it will be restarted during the maintenance window after 7 days.</p>
215 pub fn timeout(mut self, input: i32) -> Self {
216 self.inner = self.inner.timeout(input);
217 self
218 }
219 /// <p>The <code>JobRun</code> timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters <code>TIMEOUT</code> status. This value overrides the timeout value set in the parent job.</p>
220 /// <p>Jobs must have timeout values less than 7 days or 10080 minutes. Otherwise, the jobs will throw an exception.</p>
221 /// <p>When the value is left blank, the timeout is defaulted to 2880 minutes.</p>
222 /// <p>Any existing Glue jobs that had a timeout value greater than 7 days will be defaulted to 7 days. For instance if you have specified a timeout of 20 days for a batch job, it will be stopped on the 7th day.</p>
223 /// <p>For streaming jobs, if you have set up a maintenance window, it will be restarted during the maintenance window after 7 days.</p>
224 pub fn set_timeout(mut self, input: ::std::option::Option<i32>) -> Self {
225 self.inner = self.inner.set_timeout(input);
226 self
227 }
228 /// <p>The <code>JobRun</code> timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters <code>TIMEOUT</code> status. This value overrides the timeout value set in the parent job.</p>
229 /// <p>Jobs must have timeout values less than 7 days or 10080 minutes. Otherwise, the jobs will throw an exception.</p>
230 /// <p>When the value is left blank, the timeout is defaulted to 2880 minutes.</p>
231 /// <p>Any existing Glue jobs that had a timeout value greater than 7 days will be defaulted to 7 days. For instance if you have specified a timeout of 20 days for a batch job, it will be stopped on the 7th day.</p>
232 /// <p>For streaming jobs, if you have set up a maintenance window, it will be restarted during the maintenance window after 7 days.</p>
233 pub fn get_timeout(&self) -> &::std::option::Option<i32> {
234 self.inner.get_timeout()
235 }
236 /// <p>For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/"> Glue pricing page</a>.</p>
237 /// <p>For Glue version 2.0+ jobs, you cannot specify a <code>Maximum capacity</code>. Instead, you should specify a <code>Worker type</code> and the <code>Number of workers</code>.</p>
238 /// <p>Do not set <code>MaxCapacity</code> if using <code>WorkerType</code> and <code>NumberOfWorkers</code>.</p>
239 /// <p>The value that can be allocated for <code>MaxCapacity</code> depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:</p>
240 /// <ul>
241 /// <li>
242 /// <p>When you specify a Python shell job (<code>JobCommand.Name</code>="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.</p></li>
243 /// <li>
244 /// <p>When you specify an Apache Spark ETL job (<code>JobCommand.Name</code>="glueetl") or Apache Spark streaming ETL job (<code>JobCommand.Name</code>="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.</p></li>
245 /// </ul>
246 pub fn max_capacity(mut self, input: f64) -> Self {
247 self.inner = self.inner.max_capacity(input);
248 self
249 }
250 /// <p>For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/"> Glue pricing page</a>.</p>
251 /// <p>For Glue version 2.0+ jobs, you cannot specify a <code>Maximum capacity</code>. Instead, you should specify a <code>Worker type</code> and the <code>Number of workers</code>.</p>
252 /// <p>Do not set <code>MaxCapacity</code> if using <code>WorkerType</code> and <code>NumberOfWorkers</code>.</p>
253 /// <p>The value that can be allocated for <code>MaxCapacity</code> depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:</p>
254 /// <ul>
255 /// <li>
256 /// <p>When you specify a Python shell job (<code>JobCommand.Name</code>="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.</p></li>
257 /// <li>
258 /// <p>When you specify an Apache Spark ETL job (<code>JobCommand.Name</code>="glueetl") or Apache Spark streaming ETL job (<code>JobCommand.Name</code>="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.</p></li>
259 /// </ul>
260 pub fn set_max_capacity(mut self, input: ::std::option::Option<f64>) -> Self {
261 self.inner = self.inner.set_max_capacity(input);
262 self
263 }
264 /// <p>For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/"> Glue pricing page</a>.</p>
265 /// <p>For Glue version 2.0+ jobs, you cannot specify a <code>Maximum capacity</code>. Instead, you should specify a <code>Worker type</code> and the <code>Number of workers</code>.</p>
266 /// <p>Do not set <code>MaxCapacity</code> if using <code>WorkerType</code> and <code>NumberOfWorkers</code>.</p>
267 /// <p>The value that can be allocated for <code>MaxCapacity</code> depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:</p>
268 /// <ul>
269 /// <li>
270 /// <p>When you specify a Python shell job (<code>JobCommand.Name</code>="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.</p></li>
271 /// <li>
272 /// <p>When you specify an Apache Spark ETL job (<code>JobCommand.Name</code>="glueetl") or Apache Spark streaming ETL job (<code>JobCommand.Name</code>="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.</p></li>
273 /// </ul>
274 pub fn get_max_capacity(&self) -> &::std::option::Option<f64> {
275 self.inner.get_max_capacity()
276 }
277 /// <p>The name of the <code>SecurityConfiguration</code> structure to be used with this job run.</p>
278 pub fn security_configuration(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
279 self.inner = self.inner.security_configuration(input.into());
280 self
281 }
282 /// <p>The name of the <code>SecurityConfiguration</code> structure to be used with this job run.</p>
283 pub fn set_security_configuration(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
284 self.inner = self.inner.set_security_configuration(input);
285 self
286 }
287 /// <p>The name of the <code>SecurityConfiguration</code> structure to be used with this job run.</p>
288 pub fn get_security_configuration(&self) -> &::std::option::Option<::std::string::String> {
289 self.inner.get_security_configuration()
290 }
291 /// <p>Specifies configuration properties of a job run notification.</p>
292 pub fn notification_property(mut self, input: crate::types::NotificationProperty) -> Self {
293 self.inner = self.inner.notification_property(input);
294 self
295 }
296 /// <p>Specifies configuration properties of a job run notification.</p>
297 pub fn set_notification_property(mut self, input: ::std::option::Option<crate::types::NotificationProperty>) -> Self {
298 self.inner = self.inner.set_notification_property(input);
299 self
300 }
301 /// <p>Specifies configuration properties of a job run notification.</p>
302 pub fn get_notification_property(&self) -> &::std::option::Option<crate::types::NotificationProperty> {
303 self.inner.get_notification_property()
304 }
305 /// <p>The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
306 /// <ul>
307 /// <li>
308 /// <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
309 /// <li>
310 /// <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
311 /// <li>
312 /// <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p></li>
313 /// <li>
314 /// <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p></li>
315 /// <li>
316 /// <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.</p></li>
317 /// <li>
318 /// <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.</p></li>
319 /// </ul>
320 pub fn worker_type(mut self, input: crate::types::WorkerType) -> Self {
321 self.inner = self.inner.worker_type(input);
322 self
323 }
324 /// <p>The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
325 /// <ul>
326 /// <li>
327 /// <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
328 /// <li>
329 /// <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
330 /// <li>
331 /// <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p></li>
332 /// <li>
333 /// <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p></li>
334 /// <li>
335 /// <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.</p></li>
336 /// <li>
337 /// <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.</p></li>
338 /// </ul>
339 pub fn set_worker_type(mut self, input: ::std::option::Option<crate::types::WorkerType>) -> Self {
340 self.inner = self.inner.set_worker_type(input);
341 self
342 }
343 /// <p>The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
344 /// <ul>
345 /// <li>
346 /// <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
347 /// <li>
348 /// <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
349 /// <li>
350 /// <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p></li>
351 /// <li>
352 /// <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p></li>
353 /// <li>
354 /// <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.</p></li>
355 /// <li>
356 /// <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.</p></li>
357 /// </ul>
358 pub fn get_worker_type(&self) -> &::std::option::Option<crate::types::WorkerType> {
359 self.inner.get_worker_type()
360 }
361 /// <p>The number of workers of a defined <code>workerType</code> that are allocated when a job runs.</p>
362 pub fn number_of_workers(mut self, input: i32) -> Self {
363 self.inner = self.inner.number_of_workers(input);
364 self
365 }
366 /// <p>The number of workers of a defined <code>workerType</code> that are allocated when a job runs.</p>
367 pub fn set_number_of_workers(mut self, input: ::std::option::Option<i32>) -> Self {
368 self.inner = self.inner.set_number_of_workers(input);
369 self
370 }
371 /// <p>The number of workers of a defined <code>workerType</code> that are allocated when a job runs.</p>
372 pub fn get_number_of_workers(&self) -> &::std::option::Option<i32> {
373 self.inner.get_number_of_workers()
374 }
375 /// <p>Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.</p>
376 /// <p>The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.</p>
377 /// <p>Only jobs with Glue version 3.0 and above and command type <code>glueetl</code> will be allowed to set <code>ExecutionClass</code> to <code>FLEX</code>. The flexible execution class is available for Spark jobs.</p>
378 pub fn execution_class(mut self, input: crate::types::ExecutionClass) -> Self {
379 self.inner = self.inner.execution_class(input);
380 self
381 }
382 /// <p>Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.</p>
383 /// <p>The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.</p>
384 /// <p>Only jobs with Glue version 3.0 and above and command type <code>glueetl</code> will be allowed to set <code>ExecutionClass</code> to <code>FLEX</code>. The flexible execution class is available for Spark jobs.</p>
385 pub fn set_execution_class(mut self, input: ::std::option::Option<crate::types::ExecutionClass>) -> Self {
386 self.inner = self.inner.set_execution_class(input);
387 self
388 }
389 /// <p>Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.</p>
390 /// <p>The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.</p>
391 /// <p>Only jobs with Glue version 3.0 and above and command type <code>glueetl</code> will be allowed to set <code>ExecutionClass</code> to <code>FLEX</code>. The flexible execution class is available for Spark jobs.</p>
392 pub fn get_execution_class(&self) -> &::std::option::Option<crate::types::ExecutionClass> {
393 self.inner.get_execution_class()
394 }
395 /// <p>This inline session policy to the StartJobRun API allows you to dynamically restrict the permissions of the specified execution role for the scope of the job, without requiring the creation of additional IAM roles.</p>
396 pub fn execution_role_session_policy(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
397 self.inner = self.inner.execution_role_session_policy(input.into());
398 self
399 }
400 /// <p>This inline session policy to the StartJobRun API allows you to dynamically restrict the permissions of the specified execution role for the scope of the job, without requiring the creation of additional IAM roles.</p>
401 pub fn set_execution_role_session_policy(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
402 self.inner = self.inner.set_execution_role_session_policy(input);
403 self
404 }
405 /// <p>This inline session policy to the StartJobRun API allows you to dynamically restrict the permissions of the specified execution role for the scope of the job, without requiring the creation of additional IAM roles.</p>
406 pub fn get_execution_role_session_policy(&self) -> &::std::option::Option<::std::string::String> {
407 self.inner.get_execution_role_session_policy()
408 }
409}