1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
#![allow(deprecated)]
#![allow(unknown_lints)]
#![allow(clippy::module_inception)]
#![allow(clippy::upper_case_acronyms)]
#![allow(clippy::large_enum_variant)]
#![allow(clippy::wrong_self_convention)]
#![allow(clippy::should_implement_trait)]
#![allow(clippy::disallowed_names)]
#![allow(clippy::vec_init_then_push)]
#![allow(clippy::type_complexity)]
#![allow(clippy::needless_return)]
#![allow(clippy::derive_partial_eq_without_eq)]
#![allow(clippy::result_large_err)]
#![allow(rustdoc::bare_urls)]
#![allow(rustdoc::redundant_explicit_links)]
#![warn(missing_docs)]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
//! This is the _Global Accelerator API Reference_. This guide is for developers who need detailed information about Global Accelerator API actions, data types, and errors. For more information about Global Accelerator features, see the [Global Accelerator Developer Guide](https://docs.aws.amazon.com/global-accelerator/latest/dg/what-is-global-accelerator.html).
//!
//! Global Accelerator is a service in which you create _accelerators_ to improve the performance of your applications for local and global users. Depending on the type of accelerator you choose, you can gain additional benefits.
//! - By using a standard accelerator, you can improve availability of your internet applications that are used by a global audience. With a standard accelerator, Global Accelerator directs traffic to optimal endpoints over the Amazon Web Services global network.
//! - For other scenarios, you might choose a custom routing accelerator. With a custom routing accelerator, you can use application logic to directly map one or more users to a specific endpoint among many endpoints.
//!
//! Global Accelerator is a global service that supports endpoints in multiple Amazon Web Services Regions but you must specify the US West (Oregon) Region to create, update, or otherwise work with accelerators. That is, for example, specify --region us-west-2 on Amazon Web Services CLI commands.
//!
//! By default, Global Accelerator provides you with static IP addresses that you associate with your accelerator. The static IP addresses are anycast from the Amazon Web Services edge network. For IPv4, Global Accelerator provides two static IPv4 addresses. For dual-stack, Global Accelerator provides a total of four addresses: two static IPv4 addresses and two static IPv6 addresses. With a standard accelerator for IPv4, instead of using the addresses that Global Accelerator provides, you can configure these entry points to be IPv4 addresses from your own IP address ranges that you bring to Global Accelerator (BYOIP).
//!
//! For a standard accelerator, they distribute incoming application traffic across multiple endpoint resources in multiple Amazon Web Services Regions , which increases the availability of your applications. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses that are located in one Amazon Web Services Region or multiple Amazon Web Services Regions. For custom routing accelerators, you map traffic that arrives to the static IP addresses to specific Amazon EC2 servers in endpoints that are virtual private cloud (VPC) subnets.
//!
//! The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you _delete_ an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to limit the users who have permissions to delete an accelerator. For more information, see [Tag-based policies](https://docs.aws.amazon.com/global-accelerator/latest/dg/access-control-manage-access-tag-policies.html).
//!
//! For standard accelerators, Global Accelerator uses the Amazon Web Services global network to route traffic to the optimal regional endpoint based on health, client location, and policies that you configure. The service reacts instantly to changes in health or configuration to ensure that internet traffic from clients is always directed to healthy endpoints.
//!
//! For more information about understanding and using Global Accelerator, see the [Global Accelerator Developer Guide](https://docs.aws.amazon.com/global-accelerator/latest/dg/what-is-global-accelerator.html).
//!
//! ## Getting Started
//!
//! > Examples are available for many services and operations, check out the
//! > [examples folder in GitHub](https://github.com/awslabs/aws-sdk-rust/tree/main/examples).
//!
//! The SDK provides one crate per AWS service. You must add [Tokio](https://crates.io/crates/tokio)
//! as a dependency within your Rust project to execute asynchronous code. To add `aws-sdk-globalaccelerator` to
//! your project, add the following to your **Cargo.toml** file:
//!
//! ```toml
//! [dependencies]
//! aws-config = { version = "1.1.2", features = ["behavior-version-latest"] }
//! aws-sdk-globalaccelerator = "1.10.0"
//! tokio = { version = "1", features = ["full"] }
//! ```
//!
//! Then in code, a client can be created with the following:
//!
//! ```rust,no_run
//! use aws_sdk_globalaccelerator as globalaccelerator;
//!
//! #[::tokio::main]
//! async fn main() -> Result<(), globalaccelerator::Error> {
//! let config = aws_config::load_from_env().await;
//! let client = aws_sdk_globalaccelerator::Client::new(&config);
//!
//! // ... make some calls with the client
//!
//! Ok(())
//! }
//! ```
//!
//! See the [client documentation](https://docs.rs/aws-sdk-globalaccelerator/latest/aws_sdk_globalaccelerator/client/struct.Client.html)
//! for information on what calls can be made, and the inputs and outputs for each of those calls.
//!
//! ## Using the SDK
//!
//! Until the SDK is released, we will be adding information about using the SDK to the
//! [Developer Guide](https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html). Feel free to suggest
//! additional sections for the guide by opening an issue and describing what you are trying to do.
//!
//! ## Getting Help
//!
//! * [GitHub discussions](https://github.com/awslabs/aws-sdk-rust/discussions) - For ideas, RFCs & general questions
//! * [GitHub issues](https://github.com/awslabs/aws-sdk-rust/issues/new/choose) - For bug reports & feature requests
//! * [Generated Docs (latest version)](https://awslabs.github.io/aws-sdk-rust/)
//! * [Usage examples](https://github.com/awslabs/aws-sdk-rust/tree/main/examples)
//!
//!
//! # Crate Organization
//!
//! The entry point for most customers will be [`Client`], which exposes one method for each API
//! offered by AWS Global Accelerator. The return value of each of these methods is a "fluent builder",
//! where the different inputs for that API are added by builder-style function call chaining,
//! followed by calling `send()` to get a [`Future`](std::future::Future) that will result in
//! either a successful output or a [`SdkError`](crate::error::SdkError).
//!
//! Some of these API inputs may be structs or enums to provide more complex structured information.
//! These structs and enums live in [`types`](crate::types). There are some simpler types for
//! representing data such as date times or binary blobs that live in [`primitives`](crate::primitives).
//!
//! All types required to configure a client via the [`Config`](crate::Config) struct live
//! in [`config`](crate::config).
//!
//! The [`operation`](crate::operation) module has a submodule for every API, and in each submodule
//! is the input, output, and error type for that API, as well as builders to construct each of those.
//!
//! There is a top-level [`Error`](crate::Error) type that encompasses all the errors that the
//! client can return. Any other error type can be converted to this `Error` type via the
//! [`From`](std::convert::From) trait.
//!
//! The other modules within this crate are not required for normal usage.
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use error_meta::Error;
#[doc(inline)]
pub use config::Config;
/// Client for calling AWS Global Accelerator.
/// ## Constructing a `Client`
///
/// A [`Config`] is required to construct a client. For most use cases, the [`aws-config`]
/// crate should be used to automatically resolve this config using
/// [`aws_config::load_from_env()`], since this will resolve an [`SdkConfig`] which can be shared
/// across multiple different AWS SDK clients. This config resolution process can be customized
/// by calling [`aws_config::from_env()`] instead, which returns a [`ConfigLoader`] that uses
/// the [builder pattern] to customize the default config.
///
/// In the simplest case, creating a client looks as follows:
/// ```rust,no_run
/// # async fn wrapper() {
/// let config = aws_config::load_from_env().await;
/// let client = aws_sdk_globalaccelerator::Client::new(&config);
/// # }
/// ```
///
/// Occasionally, SDKs may have additional service-specific values that can be set on the [`Config`] that
/// is absent from [`SdkConfig`], or slightly different settings for a specific client may be desired.
/// The [`Config`] struct implements `From<&SdkConfig>`, so setting these specific settings can be
/// done as follows:
///
/// ```rust,no_run
/// # async fn wrapper() {
/// let sdk_config = ::aws_config::load_from_env().await;
/// let config = aws_sdk_globalaccelerator::config::Builder::from(&sdk_config)
/// # /*
/// .some_service_specific_setting("value")
/// # */
/// .build();
/// # }
/// ```
///
/// See the [`aws-config` docs] and [`Config`] for more information on customizing configuration.
///
/// _Note:_ Client construction is expensive due to connection thread pool initialization, and should
/// be done once at application start-up.
///
/// [`Config`]: crate::Config
/// [`ConfigLoader`]: https://docs.rs/aws-config/*/aws_config/struct.ConfigLoader.html
/// [`SdkConfig`]: https://docs.rs/aws-config/*/aws_config/struct.SdkConfig.html
/// [`aws-config` docs]: https://docs.rs/aws-config/*
/// [`aws-config`]: https://crates.io/crates/aws-config
/// [`aws_config::from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.from_env.html
/// [`aws_config::load_from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.load_from_env.html
/// [builder pattern]: https://rust-lang.github.io/api-guidelines/type-safety.html#builders-enable-construction-of-complex-values-c-builder
/// # Using the `Client`
///
/// A client has a function for every operation that can be performed by the service.
/// For example, the [`AddCustomRoutingEndpoints`](crate::operation::add_custom_routing_endpoints) operation has
/// a [`Client::add_custom_routing_endpoints`], function which returns a builder for that operation.
/// The fluent builder ultimately has a `send()` function that returns an async future that
/// returns a result, as illustrated below:
///
/// ```rust,ignore
/// let result = client.add_custom_routing_endpoints()
/// .endpoint_group_arn("example")
/// .send()
/// .await;
/// ```
///
/// The underlying HTTP requests that get made by this can be modified with the `customize_operation`
/// function on the fluent builder. See the [`customize`](crate::client::customize) module for more
/// information.
pub mod client;
/// Configuration for AWS Global Accelerator.
pub mod config;
/// Common errors and error handling utilities.
pub mod error;
mod error_meta;
/// Information about this crate.
pub mod meta;
/// All operations that this crate can perform.
pub mod operation;
/// Primitives such as `Blob` or `DateTime` used by other types.
pub mod primitives;
/// Data structures used by operation inputs/outputs.
pub mod types;
mod auth_plugin;
pub(crate) mod client_idempotency_token;
mod idempotency_token;
pub(crate) mod protocol_serde;
mod serialization_settings;
mod endpoint_lib;
mod lens;
mod json_errors;
mod serde_util;
#[doc(inline)]
pub use client::Client;