aws_sdk_forecast/operation/create_predictor/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_predictor::_create_predictor_output::CreatePredictorOutputBuilder;
3
4pub use crate::operation::create_predictor::_create_predictor_input::CreatePredictorInputBuilder;
5
6impl crate::operation::create_predictor::builders::CreatePredictorInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_predictor::CreatePredictorOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_predictor::CreatePredictorError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_predictor();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreatePredictor`.
24///
25/// <note>
26/// <p>This operation creates a legacy predictor that does not include all the predictor functionalities provided by Amazon Forecast. To create a predictor that is compatible with all aspects of Forecast, use <code>CreateAutoPredictor</code>.</p>
27/// </note>
28/// <p>Creates an Amazon Forecast predictor.</p>
29/// <p>In the request, provide a dataset group and either specify an algorithm or let Amazon Forecast choose an algorithm for you using AutoML. If you specify an algorithm, you also can override algorithm-specific hyperparameters.</p>
30/// <p>Amazon Forecast uses the algorithm to train a predictor using the latest version of the datasets in the specified dataset group. You can then generate a forecast using the <code>CreateForecast</code> operation.</p>
31/// <p>To see the evaluation metrics, use the <code>GetAccuracyMetrics</code> operation.</p>
32/// <p>You can specify a featurization configuration to fill and aggregate the data fields in the <code>TARGET_TIME_SERIES</code> dataset to improve model training. For more information, see <code>FeaturizationConfig</code>.</p>
33/// <p>For RELATED_TIME_SERIES datasets, <code>CreatePredictor</code> verifies that the <code>DataFrequency</code> specified when the dataset was created matches the <code>ForecastFrequency</code>. TARGET_TIME_SERIES datasets don't have this restriction. Amazon Forecast also verifies the delimiter and timestamp format. For more information, see <code>howitworks-datasets-groups</code>.</p>
34/// <p>By default, predictors are trained and evaluated at the 0.1 (P10), 0.5 (P50), and 0.9 (P90) quantiles. You can choose custom forecast types to train and evaluate your predictor by setting the <code>ForecastTypes</code>.</p>
35/// <p><b>AutoML</b></p>
36/// <p>If you want Amazon Forecast to evaluate each algorithm and choose the one that minimizes the <code>objective function</code>, set <code>PerformAutoML</code> to <code>true</code>. The <code>objective function</code> is defined as the mean of the weighted losses over the forecast types. By default, these are the p10, p50, and p90 quantile losses. For more information, see <code>EvaluationResult</code>.</p>
37/// <p>When AutoML is enabled, the following properties are disallowed:</p>
38/// <ul>
39/// <li>
40/// <p><code>AlgorithmArn</code></p></li>
41/// <li>
42/// <p><code>HPOConfig</code></p></li>
43/// <li>
44/// <p><code>PerformHPO</code></p></li>
45/// <li>
46/// <p><code>TrainingParameters</code></p></li>
47/// </ul>
48/// <p>To get a list of all of your predictors, use the <code>ListPredictors</code> operation.</p><note>
49/// <p>Before you can use the predictor to create a forecast, the <code>Status</code> of the predictor must be <code>ACTIVE</code>, signifying that training has completed. To get the status, use the <code>DescribePredictor</code> operation.</p>
50/// </note>
51#[derive(::std::clone::Clone, ::std::fmt::Debug)]
52pub struct CreatePredictorFluentBuilder {
53 handle: ::std::sync::Arc<crate::client::Handle>,
54 inner: crate::operation::create_predictor::builders::CreatePredictorInputBuilder,
55 config_override: ::std::option::Option<crate::config::Builder>,
56}
57impl
58 crate::client::customize::internal::CustomizableSend<
59 crate::operation::create_predictor::CreatePredictorOutput,
60 crate::operation::create_predictor::CreatePredictorError,
61 > for CreatePredictorFluentBuilder
62{
63 fn send(
64 self,
65 config_override: crate::config::Builder,
66 ) -> crate::client::customize::internal::BoxFuture<
67 crate::client::customize::internal::SendResult<
68 crate::operation::create_predictor::CreatePredictorOutput,
69 crate::operation::create_predictor::CreatePredictorError,
70 >,
71 > {
72 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
73 }
74}
75impl CreatePredictorFluentBuilder {
76 /// Creates a new `CreatePredictorFluentBuilder`.
77 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
78 Self {
79 handle,
80 inner: ::std::default::Default::default(),
81 config_override: ::std::option::Option::None,
82 }
83 }
84 /// Access the CreatePredictor as a reference.
85 pub fn as_input(&self) -> &crate::operation::create_predictor::builders::CreatePredictorInputBuilder {
86 &self.inner
87 }
88 /// Sends the request and returns the response.
89 ///
90 /// If an error occurs, an `SdkError` will be returned with additional details that
91 /// can be matched against.
92 ///
93 /// By default, any retryable failures will be retried twice. Retry behavior
94 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
95 /// set when configuring the client.
96 pub async fn send(
97 self,
98 ) -> ::std::result::Result<
99 crate::operation::create_predictor::CreatePredictorOutput,
100 ::aws_smithy_runtime_api::client::result::SdkError<
101 crate::operation::create_predictor::CreatePredictorError,
102 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
103 >,
104 > {
105 let input = self
106 .inner
107 .build()
108 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
109 let runtime_plugins = crate::operation::create_predictor::CreatePredictor::operation_runtime_plugins(
110 self.handle.runtime_plugins.clone(),
111 &self.handle.conf,
112 self.config_override,
113 );
114 crate::operation::create_predictor::CreatePredictor::orchestrate(&runtime_plugins, input).await
115 }
116
117 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
118 pub fn customize(
119 self,
120 ) -> crate::client::customize::CustomizableOperation<
121 crate::operation::create_predictor::CreatePredictorOutput,
122 crate::operation::create_predictor::CreatePredictorError,
123 Self,
124 > {
125 crate::client::customize::CustomizableOperation::new(self)
126 }
127 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
128 self.set_config_override(::std::option::Option::Some(config_override.into()));
129 self
130 }
131
132 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
133 self.config_override = config_override;
134 self
135 }
136 /// <p>A name for the predictor.</p>
137 pub fn predictor_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
138 self.inner = self.inner.predictor_name(input.into());
139 self
140 }
141 /// <p>A name for the predictor.</p>
142 pub fn set_predictor_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
143 self.inner = self.inner.set_predictor_name(input);
144 self
145 }
146 /// <p>A name for the predictor.</p>
147 pub fn get_predictor_name(&self) -> &::std::option::Option<::std::string::String> {
148 self.inner.get_predictor_name()
149 }
150 /// <p>The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if <code>PerformAutoML</code> is not set to <code>true</code>.</p>
151 /// <p class="title"><b>Supported algorithms:</b></p>
152 /// <ul>
153 /// <li>
154 /// <p><code>arn:aws:forecast:::algorithm/ARIMA</code></p></li>
155 /// <li>
156 /// <p><code>arn:aws:forecast:::algorithm/CNN-QR</code></p></li>
157 /// <li>
158 /// <p><code>arn:aws:forecast:::algorithm/Deep_AR_Plus</code></p></li>
159 /// <li>
160 /// <p><code>arn:aws:forecast:::algorithm/ETS</code></p></li>
161 /// <li>
162 /// <p><code>arn:aws:forecast:::algorithm/NPTS</code></p></li>
163 /// <li>
164 /// <p><code>arn:aws:forecast:::algorithm/Prophet</code></p></li>
165 /// </ul>
166 pub fn algorithm_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
167 self.inner = self.inner.algorithm_arn(input.into());
168 self
169 }
170 /// <p>The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if <code>PerformAutoML</code> is not set to <code>true</code>.</p>
171 /// <p class="title"><b>Supported algorithms:</b></p>
172 /// <ul>
173 /// <li>
174 /// <p><code>arn:aws:forecast:::algorithm/ARIMA</code></p></li>
175 /// <li>
176 /// <p><code>arn:aws:forecast:::algorithm/CNN-QR</code></p></li>
177 /// <li>
178 /// <p><code>arn:aws:forecast:::algorithm/Deep_AR_Plus</code></p></li>
179 /// <li>
180 /// <p><code>arn:aws:forecast:::algorithm/ETS</code></p></li>
181 /// <li>
182 /// <p><code>arn:aws:forecast:::algorithm/NPTS</code></p></li>
183 /// <li>
184 /// <p><code>arn:aws:forecast:::algorithm/Prophet</code></p></li>
185 /// </ul>
186 pub fn set_algorithm_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
187 self.inner = self.inner.set_algorithm_arn(input);
188 self
189 }
190 /// <p>The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if <code>PerformAutoML</code> is not set to <code>true</code>.</p>
191 /// <p class="title"><b>Supported algorithms:</b></p>
192 /// <ul>
193 /// <li>
194 /// <p><code>arn:aws:forecast:::algorithm/ARIMA</code></p></li>
195 /// <li>
196 /// <p><code>arn:aws:forecast:::algorithm/CNN-QR</code></p></li>
197 /// <li>
198 /// <p><code>arn:aws:forecast:::algorithm/Deep_AR_Plus</code></p></li>
199 /// <li>
200 /// <p><code>arn:aws:forecast:::algorithm/ETS</code></p></li>
201 /// <li>
202 /// <p><code>arn:aws:forecast:::algorithm/NPTS</code></p></li>
203 /// <li>
204 /// <p><code>arn:aws:forecast:::algorithm/Prophet</code></p></li>
205 /// </ul>
206 pub fn get_algorithm_arn(&self) -> &::std::option::Option<::std::string::String> {
207 self.inner.get_algorithm_arn()
208 }
209 /// <p>Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the prediction length.</p>
210 /// <p>For example, if you configure a dataset for daily data collection (using the <code>DataFrequency</code> parameter of the <code>CreateDataset</code> operation) and set the forecast horizon to 10, the model returns predictions for 10 days.</p>
211 /// <p>The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length.</p>
212 pub fn forecast_horizon(mut self, input: i32) -> Self {
213 self.inner = self.inner.forecast_horizon(input);
214 self
215 }
216 /// <p>Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the prediction length.</p>
217 /// <p>For example, if you configure a dataset for daily data collection (using the <code>DataFrequency</code> parameter of the <code>CreateDataset</code> operation) and set the forecast horizon to 10, the model returns predictions for 10 days.</p>
218 /// <p>The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length.</p>
219 pub fn set_forecast_horizon(mut self, input: ::std::option::Option<i32>) -> Self {
220 self.inner = self.inner.set_forecast_horizon(input);
221 self
222 }
223 /// <p>Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the prediction length.</p>
224 /// <p>For example, if you configure a dataset for daily data collection (using the <code>DataFrequency</code> parameter of the <code>CreateDataset</code> operation) and set the forecast horizon to 10, the model returns predictions for 10 days.</p>
225 /// <p>The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length.</p>
226 pub fn get_forecast_horizon(&self) -> &::std::option::Option<i32> {
227 self.inner.get_forecast_horizon()
228 }
229 ///
230 /// Appends an item to `ForecastTypes`.
231 ///
232 /// To override the contents of this collection use [`set_forecast_types`](Self::set_forecast_types).
233 ///
234 /// <p>Specifies the forecast types used to train a predictor. You can specify up to five forecast types. Forecast types can be quantiles from 0.01 to 0.99, by increments of 0.01 or higher. You can also specify the mean forecast with <code>mean</code>.</p>
235 /// <p>The default value is <code>\["0.10", "0.50", "0.9"\]</code>.</p>
236 pub fn forecast_types(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
237 self.inner = self.inner.forecast_types(input.into());
238 self
239 }
240 /// <p>Specifies the forecast types used to train a predictor. You can specify up to five forecast types. Forecast types can be quantiles from 0.01 to 0.99, by increments of 0.01 or higher. You can also specify the mean forecast with <code>mean</code>.</p>
241 /// <p>The default value is <code>\["0.10", "0.50", "0.9"\]</code>.</p>
242 pub fn set_forecast_types(mut self, input: ::std::option::Option<::std::vec::Vec<::std::string::String>>) -> Self {
243 self.inner = self.inner.set_forecast_types(input);
244 self
245 }
246 /// <p>Specifies the forecast types used to train a predictor. You can specify up to five forecast types. Forecast types can be quantiles from 0.01 to 0.99, by increments of 0.01 or higher. You can also specify the mean forecast with <code>mean</code>.</p>
247 /// <p>The default value is <code>\["0.10", "0.50", "0.9"\]</code>.</p>
248 pub fn get_forecast_types(&self) -> &::std::option::Option<::std::vec::Vec<::std::string::String>> {
249 self.inner.get_forecast_types()
250 }
251 /// <p>Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and chooses the best algorithm and configuration for your training dataset.</p>
252 /// <p>The default value is <code>false</code>. In this case, you are required to specify an algorithm.</p>
253 /// <p>Set <code>PerformAutoML</code> to <code>true</code> to have Amazon Forecast perform AutoML. This is a good option if you aren't sure which algorithm is suitable for your training data. In this case, <code>PerformHPO</code> must be false.</p>
254 pub fn perform_auto_ml(mut self, input: bool) -> Self {
255 self.inner = self.inner.perform_auto_ml(input);
256 self
257 }
258 /// <p>Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and chooses the best algorithm and configuration for your training dataset.</p>
259 /// <p>The default value is <code>false</code>. In this case, you are required to specify an algorithm.</p>
260 /// <p>Set <code>PerformAutoML</code> to <code>true</code> to have Amazon Forecast perform AutoML. This is a good option if you aren't sure which algorithm is suitable for your training data. In this case, <code>PerformHPO</code> must be false.</p>
261 pub fn set_perform_auto_ml(mut self, input: ::std::option::Option<bool>) -> Self {
262 self.inner = self.inner.set_perform_auto_ml(input);
263 self
264 }
265 /// <p>Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and chooses the best algorithm and configuration for your training dataset.</p>
266 /// <p>The default value is <code>false</code>. In this case, you are required to specify an algorithm.</p>
267 /// <p>Set <code>PerformAutoML</code> to <code>true</code> to have Amazon Forecast perform AutoML. This is a good option if you aren't sure which algorithm is suitable for your training data. In this case, <code>PerformHPO</code> must be false.</p>
268 pub fn get_perform_auto_ml(&self) -> &::std::option::Option<bool> {
269 self.inner.get_perform_auto_ml()
270 }
271 /// <note>
272 /// <p>The <code>LatencyOptimized</code> AutoML override strategy is only available in private beta. Contact Amazon Web Services Support or your account manager to learn more about access privileges.</p>
273 /// </note>
274 /// <p>Used to overide the default AutoML strategy, which is to optimize predictor accuracy. To apply an AutoML strategy that minimizes training time, use <code>LatencyOptimized</code>.</p>
275 /// <p>This parameter is only valid for predictors trained using AutoML.</p>
276 pub fn auto_ml_override_strategy(mut self, input: crate::types::AutoMlOverrideStrategy) -> Self {
277 self.inner = self.inner.auto_ml_override_strategy(input);
278 self
279 }
280 /// <note>
281 /// <p>The <code>LatencyOptimized</code> AutoML override strategy is only available in private beta. Contact Amazon Web Services Support or your account manager to learn more about access privileges.</p>
282 /// </note>
283 /// <p>Used to overide the default AutoML strategy, which is to optimize predictor accuracy. To apply an AutoML strategy that minimizes training time, use <code>LatencyOptimized</code>.</p>
284 /// <p>This parameter is only valid for predictors trained using AutoML.</p>
285 pub fn set_auto_ml_override_strategy(mut self, input: ::std::option::Option<crate::types::AutoMlOverrideStrategy>) -> Self {
286 self.inner = self.inner.set_auto_ml_override_strategy(input);
287 self
288 }
289 /// <note>
290 /// <p>The <code>LatencyOptimized</code> AutoML override strategy is only available in private beta. Contact Amazon Web Services Support or your account manager to learn more about access privileges.</p>
291 /// </note>
292 /// <p>Used to overide the default AutoML strategy, which is to optimize predictor accuracy. To apply an AutoML strategy that minimizes training time, use <code>LatencyOptimized</code>.</p>
293 /// <p>This parameter is only valid for predictors trained using AutoML.</p>
294 pub fn get_auto_ml_override_strategy(&self) -> &::std::option::Option<crate::types::AutoMlOverrideStrategy> {
295 self.inner.get_auto_ml_override_strategy()
296 }
297 /// <p>Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training data. The process of performing HPO is known as running a hyperparameter tuning job.</p>
298 /// <p>The default value is <code>false</code>. In this case, Amazon Forecast uses default hyperparameter values from the chosen algorithm.</p>
299 /// <p>To override the default values, set <code>PerformHPO</code> to <code>true</code> and, optionally, supply the <code>HyperParameterTuningJobConfig</code> object. The tuning job specifies a metric to optimize, which hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to specify an algorithm and <code>PerformAutoML</code> must be false.</p>
300 /// <p>The following algorithms support HPO:</p>
301 /// <ul>
302 /// <li>
303 /// <p>DeepAR+</p></li>
304 /// <li>
305 /// <p>CNN-QR</p></li>
306 /// </ul>
307 pub fn perform_hpo(mut self, input: bool) -> Self {
308 self.inner = self.inner.perform_hpo(input);
309 self
310 }
311 /// <p>Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training data. The process of performing HPO is known as running a hyperparameter tuning job.</p>
312 /// <p>The default value is <code>false</code>. In this case, Amazon Forecast uses default hyperparameter values from the chosen algorithm.</p>
313 /// <p>To override the default values, set <code>PerformHPO</code> to <code>true</code> and, optionally, supply the <code>HyperParameterTuningJobConfig</code> object. The tuning job specifies a metric to optimize, which hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to specify an algorithm and <code>PerformAutoML</code> must be false.</p>
314 /// <p>The following algorithms support HPO:</p>
315 /// <ul>
316 /// <li>
317 /// <p>DeepAR+</p></li>
318 /// <li>
319 /// <p>CNN-QR</p></li>
320 /// </ul>
321 pub fn set_perform_hpo(mut self, input: ::std::option::Option<bool>) -> Self {
322 self.inner = self.inner.set_perform_hpo(input);
323 self
324 }
325 /// <p>Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training data. The process of performing HPO is known as running a hyperparameter tuning job.</p>
326 /// <p>The default value is <code>false</code>. In this case, Amazon Forecast uses default hyperparameter values from the chosen algorithm.</p>
327 /// <p>To override the default values, set <code>PerformHPO</code> to <code>true</code> and, optionally, supply the <code>HyperParameterTuningJobConfig</code> object. The tuning job specifies a metric to optimize, which hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to specify an algorithm and <code>PerformAutoML</code> must be false.</p>
328 /// <p>The following algorithms support HPO:</p>
329 /// <ul>
330 /// <li>
331 /// <p>DeepAR+</p></li>
332 /// <li>
333 /// <p>CNN-QR</p></li>
334 /// </ul>
335 pub fn get_perform_hpo(&self) -> &::std::option::Option<bool> {
336 self.inner.get_perform_hpo()
337 }
338 ///
339 /// Adds a key-value pair to `TrainingParameters`.
340 ///
341 /// To override the contents of this collection use [`set_training_parameters`](Self::set_training_parameters).
342 ///
343 /// <p>The hyperparameters to override for model training. The hyperparameters that you can override are listed in the individual algorithms. For the list of supported algorithms, see <code>aws-forecast-choosing-recipes</code>.</p>
344 pub fn training_parameters(
345 mut self,
346 k: impl ::std::convert::Into<::std::string::String>,
347 v: impl ::std::convert::Into<::std::string::String>,
348 ) -> Self {
349 self.inner = self.inner.training_parameters(k.into(), v.into());
350 self
351 }
352 /// <p>The hyperparameters to override for model training. The hyperparameters that you can override are listed in the individual algorithms. For the list of supported algorithms, see <code>aws-forecast-choosing-recipes</code>.</p>
353 pub fn set_training_parameters(
354 mut self,
355 input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
356 ) -> Self {
357 self.inner = self.inner.set_training_parameters(input);
358 self
359 }
360 /// <p>The hyperparameters to override for model training. The hyperparameters that you can override are listed in the individual algorithms. For the list of supported algorithms, see <code>aws-forecast-choosing-recipes</code>.</p>
361 pub fn get_training_parameters(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
362 self.inner.get_training_parameters()
363 }
364 /// <p>Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.</p>
365 pub fn evaluation_parameters(mut self, input: crate::types::EvaluationParameters) -> Self {
366 self.inner = self.inner.evaluation_parameters(input);
367 self
368 }
369 /// <p>Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.</p>
370 pub fn set_evaluation_parameters(mut self, input: ::std::option::Option<crate::types::EvaluationParameters>) -> Self {
371 self.inner = self.inner.set_evaluation_parameters(input);
372 self
373 }
374 /// <p>Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.</p>
375 pub fn get_evaluation_parameters(&self) -> &::std::option::Option<crate::types::EvaluationParameters> {
376 self.inner.get_evaluation_parameters()
377 }
378 /// <p>Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization (HPO). For more information, see <code>aws-forecast-choosing-recipes</code>.</p>
379 /// <p>If you included the <code>HPOConfig</code> object, you must set <code>PerformHPO</code> to true.</p>
380 pub fn hpo_config(mut self, input: crate::types::HyperParameterTuningJobConfig) -> Self {
381 self.inner = self.inner.hpo_config(input);
382 self
383 }
384 /// <p>Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization (HPO). For more information, see <code>aws-forecast-choosing-recipes</code>.</p>
385 /// <p>If you included the <code>HPOConfig</code> object, you must set <code>PerformHPO</code> to true.</p>
386 pub fn set_hpo_config(mut self, input: ::std::option::Option<crate::types::HyperParameterTuningJobConfig>) -> Self {
387 self.inner = self.inner.set_hpo_config(input);
388 self
389 }
390 /// <p>Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization (HPO). For more information, see <code>aws-forecast-choosing-recipes</code>.</p>
391 /// <p>If you included the <code>HPOConfig</code> object, you must set <code>PerformHPO</code> to true.</p>
392 pub fn get_hpo_config(&self) -> &::std::option::Option<crate::types::HyperParameterTuningJobConfig> {
393 self.inner.get_hpo_config()
394 }
395 /// <p>Describes the dataset group that contains the data to use to train the predictor.</p>
396 pub fn input_data_config(mut self, input: crate::types::InputDataConfig) -> Self {
397 self.inner = self.inner.input_data_config(input);
398 self
399 }
400 /// <p>Describes the dataset group that contains the data to use to train the predictor.</p>
401 pub fn set_input_data_config(mut self, input: ::std::option::Option<crate::types::InputDataConfig>) -> Self {
402 self.inner = self.inner.set_input_data_config(input);
403 self
404 }
405 /// <p>Describes the dataset group that contains the data to use to train the predictor.</p>
406 pub fn get_input_data_config(&self) -> &::std::option::Option<crate::types::InputDataConfig> {
407 self.inner.get_input_data_config()
408 }
409 /// <p>The featurization configuration.</p>
410 pub fn featurization_config(mut self, input: crate::types::FeaturizationConfig) -> Self {
411 self.inner = self.inner.featurization_config(input);
412 self
413 }
414 /// <p>The featurization configuration.</p>
415 pub fn set_featurization_config(mut self, input: ::std::option::Option<crate::types::FeaturizationConfig>) -> Self {
416 self.inner = self.inner.set_featurization_config(input);
417 self
418 }
419 /// <p>The featurization configuration.</p>
420 pub fn get_featurization_config(&self) -> &::std::option::Option<crate::types::FeaturizationConfig> {
421 self.inner.get_featurization_config()
422 }
423 /// <p>An Key Management Service (KMS) key and the Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.</p>
424 pub fn encryption_config(mut self, input: crate::types::EncryptionConfig) -> Self {
425 self.inner = self.inner.encryption_config(input);
426 self
427 }
428 /// <p>An Key Management Service (KMS) key and the Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.</p>
429 pub fn set_encryption_config(mut self, input: ::std::option::Option<crate::types::EncryptionConfig>) -> Self {
430 self.inner = self.inner.set_encryption_config(input);
431 self
432 }
433 /// <p>An Key Management Service (KMS) key and the Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.</p>
434 pub fn get_encryption_config(&self) -> &::std::option::Option<crate::types::EncryptionConfig> {
435 self.inner.get_encryption_config()
436 }
437 ///
438 /// Appends an item to `Tags`.
439 ///
440 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
441 ///
442 /// <p>The optional metadata that you apply to the predictor to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
443 /// <p>The following basic restrictions apply to tags:</p>
444 /// <ul>
445 /// <li>
446 /// <p>Maximum number of tags per resource - 50.</p></li>
447 /// <li>
448 /// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
449 /// <li>
450 /// <p>Maximum key length - 128 Unicode characters in UTF-8.</p></li>
451 /// <li>
452 /// <p>Maximum value length - 256 Unicode characters in UTF-8.</p></li>
453 /// <li>
454 /// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
455 /// <li>
456 /// <p>Tag keys and values are case sensitive.</p></li>
457 /// <li>
458 /// <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p></li>
459 /// </ul>
460 pub fn tags(mut self, input: crate::types::Tag) -> Self {
461 self.inner = self.inner.tags(input);
462 self
463 }
464 /// <p>The optional metadata that you apply to the predictor to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
465 /// <p>The following basic restrictions apply to tags:</p>
466 /// <ul>
467 /// <li>
468 /// <p>Maximum number of tags per resource - 50.</p></li>
469 /// <li>
470 /// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
471 /// <li>
472 /// <p>Maximum key length - 128 Unicode characters in UTF-8.</p></li>
473 /// <li>
474 /// <p>Maximum value length - 256 Unicode characters in UTF-8.</p></li>
475 /// <li>
476 /// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
477 /// <li>
478 /// <p>Tag keys and values are case sensitive.</p></li>
479 /// <li>
480 /// <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p></li>
481 /// </ul>
482 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
483 self.inner = self.inner.set_tags(input);
484 self
485 }
486 /// <p>The optional metadata that you apply to the predictor to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
487 /// <p>The following basic restrictions apply to tags:</p>
488 /// <ul>
489 /// <li>
490 /// <p>Maximum number of tags per resource - 50.</p></li>
491 /// <li>
492 /// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
493 /// <li>
494 /// <p>Maximum key length - 128 Unicode characters in UTF-8.</p></li>
495 /// <li>
496 /// <p>Maximum value length - 256 Unicode characters in UTF-8.</p></li>
497 /// <li>
498 /// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
499 /// <li>
500 /// <p>Tag keys and values are case sensitive.</p></li>
501 /// <li>
502 /// <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p></li>
503 /// </ul>
504 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
505 self.inner.get_tags()
506 }
507 /// <p>The accuracy metric used to optimize the predictor.</p>
508 pub fn optimization_metric(mut self, input: crate::types::OptimizationMetric) -> Self {
509 self.inner = self.inner.optimization_metric(input);
510 self
511 }
512 /// <p>The accuracy metric used to optimize the predictor.</p>
513 pub fn set_optimization_metric(mut self, input: ::std::option::Option<crate::types::OptimizationMetric>) -> Self {
514 self.inner = self.inner.set_optimization_metric(input);
515 self
516 }
517 /// <p>The accuracy metric used to optimize the predictor.</p>
518 pub fn get_optimization_metric(&self) -> &::std::option::Option<crate::types::OptimizationMetric> {
519 self.inner.get_optimization_metric()
520 }
521}