aws_sdk_forecast/operation/create_dataset/
builders.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_dataset::_create_dataset_output::CreateDatasetOutputBuilder;

pub use crate::operation::create_dataset::_create_dataset_input::CreateDatasetInputBuilder;

impl crate::operation::create_dataset::builders::CreateDatasetInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::create_dataset::CreateDatasetOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_dataset::CreateDatasetError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.create_dataset();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `CreateDataset`.
///
/// <p>Creates an Amazon Forecast dataset. The information about the dataset that you provide helps Forecast understand how to consume the data for model training. This includes the following:</p>
/// <ul>
/// <li>
/// <p><i> <code>DataFrequency</code> </i> - How frequently your historical time-series data is collected.</p></li>
/// <li>
/// <p><i> <code>Domain</code> </i> and <i> <code>DatasetType</code> </i> - Each dataset has an associated dataset domain and a type within the domain. Amazon Forecast provides a list of predefined domains and types within each domain. For each unique dataset domain and type within the domain, Amazon Forecast requires your data to include a minimum set of predefined fields.</p></li>
/// <li>
/// <p><i> <code>Schema</code> </i> - A schema specifies the fields in the dataset, including the field name and data type.</p></li>
/// </ul>
/// <p>After creating a dataset, you import your training data into it and add the dataset to a dataset group. You use the dataset group to create a predictor. For more information, see <a href="https://docs.aws.amazon.com/forecast/latest/dg/howitworks-datasets-groups.html">Importing datasets</a>.</p>
/// <p>To get a list of all your datasets, use the <a href="https://docs.aws.amazon.com/forecast/latest/dg/API_ListDatasets.html">ListDatasets</a> operation.</p>
/// <p>For example Forecast datasets, see the <a href="https://github.com/aws-samples/amazon-forecast-samples">Amazon Forecast Sample GitHub repository</a>.</p><note>
/// <p>The <code>Status</code> of a dataset must be <code>ACTIVE</code> before you can import training data. Use the <a href="https://docs.aws.amazon.com/forecast/latest/dg/API_DescribeDataset.html">DescribeDataset</a> operation to get the status.</p>
/// </note>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateDatasetFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_dataset::builders::CreateDatasetInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::create_dataset::CreateDatasetOutput,
        crate::operation::create_dataset::CreateDatasetError,
    > for CreateDatasetFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::create_dataset::CreateDatasetOutput,
            crate::operation::create_dataset::CreateDatasetError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl CreateDatasetFluentBuilder {
    /// Creates a new `CreateDatasetFluentBuilder`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the CreateDataset as a reference.
    pub fn as_input(&self) -> &crate::operation::create_dataset::builders::CreateDatasetInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::create_dataset::CreateDatasetOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_dataset::CreateDatasetError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::create_dataset::CreateDataset::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::create_dataset::CreateDataset::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::create_dataset::CreateDatasetOutput,
        crate::operation::create_dataset::CreateDatasetError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
        self.set_config_override(::std::option::Option::Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>A name for the dataset.</p>
    pub fn dataset_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.dataset_name(input.into());
        self
    }
    /// <p>A name for the dataset.</p>
    pub fn set_dataset_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_dataset_name(input);
        self
    }
    /// <p>A name for the dataset.</p>
    pub fn get_dataset_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_dataset_name()
    }
    /// <p>The domain associated with the dataset. When you add a dataset to a dataset group, this value and the value specified for the <code>Domain</code> parameter of the <a href="https://docs.aws.amazon.com/forecast/latest/dg/API_CreateDatasetGroup.html">CreateDatasetGroup</a> operation must match.</p>
    /// <p>The <code>Domain</code> and <code>DatasetType</code> that you choose determine the fields that must be present in the training data that you import to the dataset. For example, if you choose the <code>RETAIL</code> domain and <code>TARGET_TIME_SERIES</code> as the <code>DatasetType</code>, Amazon Forecast requires <code>item_id</code>, <code>timestamp</code>, and <code>demand</code> fields to be present in your data. For more information, see <a href="https://docs.aws.amazon.com/forecast/latest/dg/howitworks-datasets-groups.html">Importing datasets</a>.</p>
    pub fn domain(mut self, input: crate::types::Domain) -> Self {
        self.inner = self.inner.domain(input);
        self
    }
    /// <p>The domain associated with the dataset. When you add a dataset to a dataset group, this value and the value specified for the <code>Domain</code> parameter of the <a href="https://docs.aws.amazon.com/forecast/latest/dg/API_CreateDatasetGroup.html">CreateDatasetGroup</a> operation must match.</p>
    /// <p>The <code>Domain</code> and <code>DatasetType</code> that you choose determine the fields that must be present in the training data that you import to the dataset. For example, if you choose the <code>RETAIL</code> domain and <code>TARGET_TIME_SERIES</code> as the <code>DatasetType</code>, Amazon Forecast requires <code>item_id</code>, <code>timestamp</code>, and <code>demand</code> fields to be present in your data. For more information, see <a href="https://docs.aws.amazon.com/forecast/latest/dg/howitworks-datasets-groups.html">Importing datasets</a>.</p>
    pub fn set_domain(mut self, input: ::std::option::Option<crate::types::Domain>) -> Self {
        self.inner = self.inner.set_domain(input);
        self
    }
    /// <p>The domain associated with the dataset. When you add a dataset to a dataset group, this value and the value specified for the <code>Domain</code> parameter of the <a href="https://docs.aws.amazon.com/forecast/latest/dg/API_CreateDatasetGroup.html">CreateDatasetGroup</a> operation must match.</p>
    /// <p>The <code>Domain</code> and <code>DatasetType</code> that you choose determine the fields that must be present in the training data that you import to the dataset. For example, if you choose the <code>RETAIL</code> domain and <code>TARGET_TIME_SERIES</code> as the <code>DatasetType</code>, Amazon Forecast requires <code>item_id</code>, <code>timestamp</code>, and <code>demand</code> fields to be present in your data. For more information, see <a href="https://docs.aws.amazon.com/forecast/latest/dg/howitworks-datasets-groups.html">Importing datasets</a>.</p>
    pub fn get_domain(&self) -> &::std::option::Option<crate::types::Domain> {
        self.inner.get_domain()
    }
    /// <p>The dataset type. Valid values depend on the chosen <code>Domain</code>.</p>
    pub fn dataset_type(mut self, input: crate::types::DatasetType) -> Self {
        self.inner = self.inner.dataset_type(input);
        self
    }
    /// <p>The dataset type. Valid values depend on the chosen <code>Domain</code>.</p>
    pub fn set_dataset_type(mut self, input: ::std::option::Option<crate::types::DatasetType>) -> Self {
        self.inner = self.inner.set_dataset_type(input);
        self
    }
    /// <p>The dataset type. Valid values depend on the chosen <code>Domain</code>.</p>
    pub fn get_dataset_type(&self) -> &::std::option::Option<crate::types::DatasetType> {
        self.inner.get_dataset_type()
    }
    /// <p>The frequency of data collection. This parameter is required for RELATED_TIME_SERIES datasets.</p>
    /// <p>Valid intervals are an integer followed by Y (Year), M (Month), W (Week), D (Day), H (Hour), and min (Minute). For example, "1D" indicates every day and "15min" indicates every 15 minutes. You cannot specify a value that would overlap with the next larger frequency. That means, for example, you cannot specify a frequency of 60 minutes, because that is equivalent to 1 hour. The valid values for each frequency are the following:</p>
    /// <ul>
    /// <li>
    /// <p>Minute - 1-59</p></li>
    /// <li>
    /// <p>Hour - 1-23</p></li>
    /// <li>
    /// <p>Day - 1-6</p></li>
    /// <li>
    /// <p>Week - 1-4</p></li>
    /// <li>
    /// <p>Month - 1-11</p></li>
    /// <li>
    /// <p>Year - 1</p></li>
    /// </ul>
    /// <p>Thus, if you want every other week forecasts, specify "2W". Or, if you want quarterly forecasts, you specify "3M".</p>
    pub fn data_frequency(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.data_frequency(input.into());
        self
    }
    /// <p>The frequency of data collection. This parameter is required for RELATED_TIME_SERIES datasets.</p>
    /// <p>Valid intervals are an integer followed by Y (Year), M (Month), W (Week), D (Day), H (Hour), and min (Minute). For example, "1D" indicates every day and "15min" indicates every 15 minutes. You cannot specify a value that would overlap with the next larger frequency. That means, for example, you cannot specify a frequency of 60 minutes, because that is equivalent to 1 hour. The valid values for each frequency are the following:</p>
    /// <ul>
    /// <li>
    /// <p>Minute - 1-59</p></li>
    /// <li>
    /// <p>Hour - 1-23</p></li>
    /// <li>
    /// <p>Day - 1-6</p></li>
    /// <li>
    /// <p>Week - 1-4</p></li>
    /// <li>
    /// <p>Month - 1-11</p></li>
    /// <li>
    /// <p>Year - 1</p></li>
    /// </ul>
    /// <p>Thus, if you want every other week forecasts, specify "2W". Or, if you want quarterly forecasts, you specify "3M".</p>
    pub fn set_data_frequency(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_data_frequency(input);
        self
    }
    /// <p>The frequency of data collection. This parameter is required for RELATED_TIME_SERIES datasets.</p>
    /// <p>Valid intervals are an integer followed by Y (Year), M (Month), W (Week), D (Day), H (Hour), and min (Minute). For example, "1D" indicates every day and "15min" indicates every 15 minutes. You cannot specify a value that would overlap with the next larger frequency. That means, for example, you cannot specify a frequency of 60 minutes, because that is equivalent to 1 hour. The valid values for each frequency are the following:</p>
    /// <ul>
    /// <li>
    /// <p>Minute - 1-59</p></li>
    /// <li>
    /// <p>Hour - 1-23</p></li>
    /// <li>
    /// <p>Day - 1-6</p></li>
    /// <li>
    /// <p>Week - 1-4</p></li>
    /// <li>
    /// <p>Month - 1-11</p></li>
    /// <li>
    /// <p>Year - 1</p></li>
    /// </ul>
    /// <p>Thus, if you want every other week forecasts, specify "2W". Or, if you want quarterly forecasts, you specify "3M".</p>
    pub fn get_data_frequency(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_data_frequency()
    }
    /// <p>The schema for the dataset. The schema attributes and their order must match the fields in your data. The dataset <code>Domain</code> and <code>DatasetType</code> that you choose determine the minimum required fields in your training data. For information about the required fields for a specific dataset domain and type, see <a href="https://docs.aws.amazon.com/forecast/latest/dg/howitworks-domains-ds-types.html">Dataset Domains and Dataset Types</a>.</p>
    pub fn schema(mut self, input: crate::types::Schema) -> Self {
        self.inner = self.inner.schema(input);
        self
    }
    /// <p>The schema for the dataset. The schema attributes and their order must match the fields in your data. The dataset <code>Domain</code> and <code>DatasetType</code> that you choose determine the minimum required fields in your training data. For information about the required fields for a specific dataset domain and type, see <a href="https://docs.aws.amazon.com/forecast/latest/dg/howitworks-domains-ds-types.html">Dataset Domains and Dataset Types</a>.</p>
    pub fn set_schema(mut self, input: ::std::option::Option<crate::types::Schema>) -> Self {
        self.inner = self.inner.set_schema(input);
        self
    }
    /// <p>The schema for the dataset. The schema attributes and their order must match the fields in your data. The dataset <code>Domain</code> and <code>DatasetType</code> that you choose determine the minimum required fields in your training data. For information about the required fields for a specific dataset domain and type, see <a href="https://docs.aws.amazon.com/forecast/latest/dg/howitworks-domains-ds-types.html">Dataset Domains and Dataset Types</a>.</p>
    pub fn get_schema(&self) -> &::std::option::Option<crate::types::Schema> {
        self.inner.get_schema()
    }
    /// <p>An Key Management Service (KMS) key and the Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.</p>
    pub fn encryption_config(mut self, input: crate::types::EncryptionConfig) -> Self {
        self.inner = self.inner.encryption_config(input);
        self
    }
    /// <p>An Key Management Service (KMS) key and the Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.</p>
    pub fn set_encryption_config(mut self, input: ::std::option::Option<crate::types::EncryptionConfig>) -> Self {
        self.inner = self.inner.set_encryption_config(input);
        self
    }
    /// <p>An Key Management Service (KMS) key and the Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.</p>
    pub fn get_encryption_config(&self) -> &::std::option::Option<crate::types::EncryptionConfig> {
        self.inner.get_encryption_config()
    }
    ///
    /// Appends an item to `Tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p>The optional metadata that you apply to the dataset to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
    /// <p>The following basic restrictions apply to tags:</p>
    /// <ul>
    /// <li>
    /// <p>Maximum number of tags per resource - 50.</p></li>
    /// <li>
    /// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
    /// <li>
    /// <p>Maximum key length - 128 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>Maximum value length - 256 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
    /// <li>
    /// <p>Tag keys and values are case sensitive.</p></li>
    /// <li>
    /// <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p></li>
    /// </ul>
    pub fn tags(mut self, input: crate::types::Tag) -> Self {
        self.inner = self.inner.tags(input);
        self
    }
    /// <p>The optional metadata that you apply to the dataset to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
    /// <p>The following basic restrictions apply to tags:</p>
    /// <ul>
    /// <li>
    /// <p>Maximum number of tags per resource - 50.</p></li>
    /// <li>
    /// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
    /// <li>
    /// <p>Maximum key length - 128 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>Maximum value length - 256 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
    /// <li>
    /// <p>Tag keys and values are case sensitive.</p></li>
    /// <li>
    /// <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p></li>
    /// </ul>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
        self.inner = self.inner.set_tags(input);
        self
    }
    /// <p>The optional metadata that you apply to the dataset to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
    /// <p>The following basic restrictions apply to tags:</p>
    /// <ul>
    /// <li>
    /// <p>Maximum number of tags per resource - 50.</p></li>
    /// <li>
    /// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
    /// <li>
    /// <p>Maximum key length - 128 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>Maximum value length - 256 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
    /// <li>
    /// <p>Tag keys and values are case sensitive.</p></li>
    /// <li>
    /// <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p></li>
    /// </ul>
    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
        self.inner.get_tags()
    }
}