1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_explainability::_create_explainability_output::CreateExplainabilityOutputBuilder;

pub use crate::operation::create_explainability::_create_explainability_input::CreateExplainabilityInputBuilder;

impl crate::operation::create_explainability::builders::CreateExplainabilityInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::create_explainability::CreateExplainabilityOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_explainability::CreateExplainabilityError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.create_explainability();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `CreateExplainability`.
///
/// <note>
/// <p>Explainability is only available for Forecasts and Predictors generated from an AutoPredictor (<code>CreateAutoPredictor</code>)</p>
/// </note>
/// <p>Creates an Amazon Forecast Explainability.</p>
/// <p>Explainability helps you better understand how the attributes in your datasets impact forecast. Amazon Forecast uses a metric called Impact scores to quantify the relative impact of each attribute and determine whether they increase or decrease forecast values.</p>
/// <p>To enable Forecast Explainability, your predictor must include at least one of the following: related time series, item metadata, or additional datasets like Holidays and the Weather Index.</p>
/// <p>CreateExplainability accepts either a Predictor ARN or Forecast ARN. To receive aggregated Impact scores for all time series and time points in your datasets, provide a Predictor ARN. To receive Impact scores for specific time series and time points, provide a Forecast ARN.</p>
/// <p><b>CreateExplainability with a Predictor ARN</b></p><note>
/// <p>You can only have one Explainability resource per predictor. If you already enabled <code>ExplainPredictor</code> in <code>CreateAutoPredictor</code>, that predictor already has an Explainability resource.</p>
/// </note>
/// <p>The following parameters are required when providing a Predictor ARN:</p>
/// <ul>
/// <li>
/// <p><code>ExplainabilityName</code> - A unique name for the Explainability.</p></li>
/// <li>
/// <p><code>ResourceArn</code> - The Arn of the predictor.</p></li>
/// <li>
/// <p><code>TimePointGranularity</code> - Must be set to “ALL”.</p></li>
/// <li>
/// <p><code>TimeSeriesGranularity</code> - Must be set to “ALL”.</p></li>
/// </ul>
/// <p>Do not specify a value for the following parameters:</p>
/// <ul>
/// <li>
/// <p><code>DataSource</code> - Only valid when TimeSeriesGranularity is “SPECIFIC”.</p></li>
/// <li>
/// <p><code>Schema</code> - Only valid when TimeSeriesGranularity is “SPECIFIC”.</p></li>
/// <li>
/// <p><code>StartDateTime</code> - Only valid when TimePointGranularity is “SPECIFIC”.</p></li>
/// <li>
/// <p><code>EndDateTime</code> - Only valid when TimePointGranularity is “SPECIFIC”.</p></li>
/// </ul>
/// <p><b>CreateExplainability with a Forecast ARN</b></p><note>
/// <p>You can specify a maximum of 50 time series and 500 time points.</p>
/// </note>
/// <p>The following parameters are required when providing a Predictor ARN:</p>
/// <ul>
/// <li>
/// <p><code>ExplainabilityName</code> - A unique name for the Explainability.</p></li>
/// <li>
/// <p><code>ResourceArn</code> - The Arn of the forecast.</p></li>
/// <li>
/// <p><code>TimePointGranularity</code> - Either “ALL” or “SPECIFIC”.</p></li>
/// <li>
/// <p><code>TimeSeriesGranularity</code> - Either “ALL” or “SPECIFIC”.</p></li>
/// </ul>
/// <p>If you set TimeSeriesGranularity to “SPECIFIC”, you must also provide the following:</p>
/// <ul>
/// <li>
/// <p><code>DataSource</code> - The S3 location of the CSV file specifying your time series.</p></li>
/// <li>
/// <p><code>Schema</code> - The Schema defines the attributes and attribute types listed in the Data Source.</p></li>
/// </ul>
/// <p>If you set TimePointGranularity to “SPECIFIC”, you must also provide the following:</p>
/// <ul>
/// <li>
/// <p><code>StartDateTime</code> - The first timestamp in the range of time points.</p></li>
/// <li>
/// <p><code>EndDateTime</code> - The last timestamp in the range of time points.</p></li>
/// </ul>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateExplainabilityFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_explainability::builders::CreateExplainabilityInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::create_explainability::CreateExplainabilityOutput,
        crate::operation::create_explainability::CreateExplainabilityError,
    > for CreateExplainabilityFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::create_explainability::CreateExplainabilityOutput,
            crate::operation::create_explainability::CreateExplainabilityError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl CreateExplainabilityFluentBuilder {
    /// Creates a new `CreateExplainabilityFluentBuilder`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the CreateExplainability as a reference.
    pub fn as_input(&self) -> &crate::operation::create_explainability::builders::CreateExplainabilityInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::create_explainability::CreateExplainabilityOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_explainability::CreateExplainabilityError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::create_explainability::CreateExplainability::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::create_explainability::CreateExplainability::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::create_explainability::CreateExplainabilityOutput,
        crate::operation::create_explainability::CreateExplainabilityError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
        self.set_config_override(::std::option::Option::Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>A unique name for the Explainability.</p>
    pub fn explainability_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.explainability_name(input.into());
        self
    }
    /// <p>A unique name for the Explainability.</p>
    pub fn set_explainability_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_explainability_name(input);
        self
    }
    /// <p>A unique name for the Explainability.</p>
    pub fn get_explainability_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_explainability_name()
    }
    /// <p>The Amazon Resource Name (ARN) of the Predictor or Forecast used to create the Explainability.</p>
    pub fn resource_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.resource_arn(input.into());
        self
    }
    /// <p>The Amazon Resource Name (ARN) of the Predictor or Forecast used to create the Explainability.</p>
    pub fn set_resource_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_resource_arn(input);
        self
    }
    /// <p>The Amazon Resource Name (ARN) of the Predictor or Forecast used to create the Explainability.</p>
    pub fn get_resource_arn(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_resource_arn()
    }
    /// <p>The configuration settings that define the granularity of time series and time points for the Explainability.</p>
    pub fn explainability_config(mut self, input: crate::types::ExplainabilityConfig) -> Self {
        self.inner = self.inner.explainability_config(input);
        self
    }
    /// <p>The configuration settings that define the granularity of time series and time points for the Explainability.</p>
    pub fn set_explainability_config(mut self, input: ::std::option::Option<crate::types::ExplainabilityConfig>) -> Self {
        self.inner = self.inner.set_explainability_config(input);
        self
    }
    /// <p>The configuration settings that define the granularity of time series and time points for the Explainability.</p>
    pub fn get_explainability_config(&self) -> &::std::option::Option<crate::types::ExplainabilityConfig> {
        self.inner.get_explainability_config()
    }
    /// <p>The source of your data, an Identity and Access Management (IAM) role that allows Amazon Forecast to access the data and, optionally, an Key Management Service (KMS) key.</p>
    pub fn data_source(mut self, input: crate::types::DataSource) -> Self {
        self.inner = self.inner.data_source(input);
        self
    }
    /// <p>The source of your data, an Identity and Access Management (IAM) role that allows Amazon Forecast to access the data and, optionally, an Key Management Service (KMS) key.</p>
    pub fn set_data_source(mut self, input: ::std::option::Option<crate::types::DataSource>) -> Self {
        self.inner = self.inner.set_data_source(input);
        self
    }
    /// <p>The source of your data, an Identity and Access Management (IAM) role that allows Amazon Forecast to access the data and, optionally, an Key Management Service (KMS) key.</p>
    pub fn get_data_source(&self) -> &::std::option::Option<crate::types::DataSource> {
        self.inner.get_data_source()
    }
    /// <p>Defines the fields of a dataset.</p>
    pub fn schema(mut self, input: crate::types::Schema) -> Self {
        self.inner = self.inner.schema(input);
        self
    }
    /// <p>Defines the fields of a dataset.</p>
    pub fn set_schema(mut self, input: ::std::option::Option<crate::types::Schema>) -> Self {
        self.inner = self.inner.set_schema(input);
        self
    }
    /// <p>Defines the fields of a dataset.</p>
    pub fn get_schema(&self) -> &::std::option::Option<crate::types::Schema> {
        self.inner.get_schema()
    }
    /// <p>Create an Explainability visualization that is viewable within the Amazon Web Services console.</p>
    pub fn enable_visualization(mut self, input: bool) -> Self {
        self.inner = self.inner.enable_visualization(input);
        self
    }
    /// <p>Create an Explainability visualization that is viewable within the Amazon Web Services console.</p>
    pub fn set_enable_visualization(mut self, input: ::std::option::Option<bool>) -> Self {
        self.inner = self.inner.set_enable_visualization(input);
        self
    }
    /// <p>Create an Explainability visualization that is viewable within the Amazon Web Services console.</p>
    pub fn get_enable_visualization(&self) -> &::std::option::Option<bool> {
        self.inner.get_enable_visualization()
    }
    /// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the first point for the Explainability.</p>
    /// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
    pub fn start_date_time(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.start_date_time(input.into());
        self
    }
    /// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the first point for the Explainability.</p>
    /// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
    pub fn set_start_date_time(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_start_date_time(input);
        self
    }
    /// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the first point for the Explainability.</p>
    /// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
    pub fn get_start_date_time(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_start_date_time()
    }
    /// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the last time point for the Explainability.</p>
    /// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
    pub fn end_date_time(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.end_date_time(input.into());
        self
    }
    /// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the last time point for the Explainability.</p>
    /// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
    pub fn set_end_date_time(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_end_date_time(input);
        self
    }
    /// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the last time point for the Explainability.</p>
    /// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
    pub fn get_end_date_time(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_end_date_time()
    }
    ///
    /// Appends an item to `Tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p>Optional metadata to help you categorize and organize your resources. Each tag consists of a key and an optional value, both of which you define. Tag keys and values are case sensitive.</p>
    /// <p>The following restrictions apply to tags:</p>
    /// <ul>
    /// <li>
    /// <p>For each resource, each tag key must be unique and each tag key must have one value.</p></li>
    /// <li>
    /// <p>Maximum number of tags per resource: 50.</p></li>
    /// <li>
    /// <p>Maximum key length: 128 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>Maximum value length: 256 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>Accepted characters: all letters and numbers, spaces representable in UTF-8, and + - = . _ : / @. If your tagging schema is used across other services and resources, the character restrictions of those services also apply.</p></li>
    /// <li>
    /// <p>Key prefixes cannot include any upper or lowercase combination of <code>aws:</code> or <code>AWS:</code>. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit. You cannot edit or delete tag keys with this prefix.</p></li>
    /// </ul>
    pub fn tags(mut self, input: crate::types::Tag) -> Self {
        self.inner = self.inner.tags(input);
        self
    }
    /// <p>Optional metadata to help you categorize and organize your resources. Each tag consists of a key and an optional value, both of which you define. Tag keys and values are case sensitive.</p>
    /// <p>The following restrictions apply to tags:</p>
    /// <ul>
    /// <li>
    /// <p>For each resource, each tag key must be unique and each tag key must have one value.</p></li>
    /// <li>
    /// <p>Maximum number of tags per resource: 50.</p></li>
    /// <li>
    /// <p>Maximum key length: 128 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>Maximum value length: 256 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>Accepted characters: all letters and numbers, spaces representable in UTF-8, and + - = . _ : / @. If your tagging schema is used across other services and resources, the character restrictions of those services also apply.</p></li>
    /// <li>
    /// <p>Key prefixes cannot include any upper or lowercase combination of <code>aws:</code> or <code>AWS:</code>. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit. You cannot edit or delete tag keys with this prefix.</p></li>
    /// </ul>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
        self.inner = self.inner.set_tags(input);
        self
    }
    /// <p>Optional metadata to help you categorize and organize your resources. Each tag consists of a key and an optional value, both of which you define. Tag keys and values are case sensitive.</p>
    /// <p>The following restrictions apply to tags:</p>
    /// <ul>
    /// <li>
    /// <p>For each resource, each tag key must be unique and each tag key must have one value.</p></li>
    /// <li>
    /// <p>Maximum number of tags per resource: 50.</p></li>
    /// <li>
    /// <p>Maximum key length: 128 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>Maximum value length: 256 Unicode characters in UTF-8.</p></li>
    /// <li>
    /// <p>Accepted characters: all letters and numbers, spaces representable in UTF-8, and + - = . _ : / @. If your tagging schema is used across other services and resources, the character restrictions of those services also apply.</p></li>
    /// <li>
    /// <p>Key prefixes cannot include any upper or lowercase combination of <code>aws:</code> or <code>AWS:</code>. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit. You cannot edit or delete tag keys with this prefix.</p></li>
    /// </ul>
    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
        self.inner.get_tags()
    }
}