1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_explainability::_create_explainability_output::CreateExplainabilityOutputBuilder;
pub use crate::operation::create_explainability::_create_explainability_input::CreateExplainabilityInputBuilder;
impl crate::operation::create_explainability::builders::CreateExplainabilityInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::create_explainability::CreateExplainabilityOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_explainability::CreateExplainabilityError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.create_explainability();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `CreateExplainability`.
///
/// <note>
/// <p>Explainability is only available for Forecasts and Predictors generated from an AutoPredictor (<code>CreateAutoPredictor</code>)</p>
/// </note>
/// <p>Creates an Amazon Forecast Explainability.</p>
/// <p>Explainability helps you better understand how the attributes in your datasets impact forecast. Amazon Forecast uses a metric called Impact scores to quantify the relative impact of each attribute and determine whether they increase or decrease forecast values.</p>
/// <p>To enable Forecast Explainability, your predictor must include at least one of the following: related time series, item metadata, or additional datasets like Holidays and the Weather Index.</p>
/// <p>CreateExplainability accepts either a Predictor ARN or Forecast ARN. To receive aggregated Impact scores for all time series and time points in your datasets, provide a Predictor ARN. To receive Impact scores for specific time series and time points, provide a Forecast ARN.</p>
/// <p><b>CreateExplainability with a Predictor ARN</b></p><note>
/// <p>You can only have one Explainability resource per predictor. If you already enabled <code>ExplainPredictor</code> in <code>CreateAutoPredictor</code>, that predictor already has an Explainability resource.</p>
/// </note>
/// <p>The following parameters are required when providing a Predictor ARN:</p>
/// <ul>
/// <li>
/// <p><code>ExplainabilityName</code> - A unique name for the Explainability.</p></li>
/// <li>
/// <p><code>ResourceArn</code> - The Arn of the predictor.</p></li>
/// <li>
/// <p><code>TimePointGranularity</code> - Must be set to “ALL”.</p></li>
/// <li>
/// <p><code>TimeSeriesGranularity</code> - Must be set to “ALL”.</p></li>
/// </ul>
/// <p>Do not specify a value for the following parameters:</p>
/// <ul>
/// <li>
/// <p><code>DataSource</code> - Only valid when TimeSeriesGranularity is “SPECIFIC”.</p></li>
/// <li>
/// <p><code>Schema</code> - Only valid when TimeSeriesGranularity is “SPECIFIC”.</p></li>
/// <li>
/// <p><code>StartDateTime</code> - Only valid when TimePointGranularity is “SPECIFIC”.</p></li>
/// <li>
/// <p><code>EndDateTime</code> - Only valid when TimePointGranularity is “SPECIFIC”.</p></li>
/// </ul>
/// <p><b>CreateExplainability with a Forecast ARN</b></p><note>
/// <p>You can specify a maximum of 50 time series and 500 time points.</p>
/// </note>
/// <p>The following parameters are required when providing a Predictor ARN:</p>
/// <ul>
/// <li>
/// <p><code>ExplainabilityName</code> - A unique name for the Explainability.</p></li>
/// <li>
/// <p><code>ResourceArn</code> - The Arn of the forecast.</p></li>
/// <li>
/// <p><code>TimePointGranularity</code> - Either “ALL” or “SPECIFIC”.</p></li>
/// <li>
/// <p><code>TimeSeriesGranularity</code> - Either “ALL” or “SPECIFIC”.</p></li>
/// </ul>
/// <p>If you set TimeSeriesGranularity to “SPECIFIC”, you must also provide the following:</p>
/// <ul>
/// <li>
/// <p><code>DataSource</code> - The S3 location of the CSV file specifying your time series.</p></li>
/// <li>
/// <p><code>Schema</code> - The Schema defines the attributes and attribute types listed in the Data Source.</p></li>
/// </ul>
/// <p>If you set TimePointGranularity to “SPECIFIC”, you must also provide the following:</p>
/// <ul>
/// <li>
/// <p><code>StartDateTime</code> - The first timestamp in the range of time points.</p></li>
/// <li>
/// <p><code>EndDateTime</code> - The last timestamp in the range of time points.</p></li>
/// </ul>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateExplainabilityFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_explainability::builders::CreateExplainabilityInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::create_explainability::CreateExplainabilityOutput,
crate::operation::create_explainability::CreateExplainabilityError,
> for CreateExplainabilityFluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::create_explainability::CreateExplainabilityOutput,
crate::operation::create_explainability::CreateExplainabilityError,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl CreateExplainabilityFluentBuilder {
/// Creates a new `CreateExplainabilityFluentBuilder`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the CreateExplainability as a reference.
pub fn as_input(&self) -> &crate::operation::create_explainability::builders::CreateExplainabilityInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::create_explainability::CreateExplainabilityOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_explainability::CreateExplainabilityError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::create_explainability::CreateExplainability::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::create_explainability::CreateExplainability::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::create_explainability::CreateExplainabilityOutput,
crate::operation::create_explainability::CreateExplainabilityError,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
self.set_config_override(::std::option::Option::Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>A unique name for the Explainability.</p>
pub fn explainability_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.explainability_name(input.into());
self
}
/// <p>A unique name for the Explainability.</p>
pub fn set_explainability_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_explainability_name(input);
self
}
/// <p>A unique name for the Explainability.</p>
pub fn get_explainability_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_explainability_name()
}
/// <p>The Amazon Resource Name (ARN) of the Predictor or Forecast used to create the Explainability.</p>
pub fn resource_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.resource_arn(input.into());
self
}
/// <p>The Amazon Resource Name (ARN) of the Predictor or Forecast used to create the Explainability.</p>
pub fn set_resource_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_resource_arn(input);
self
}
/// <p>The Amazon Resource Name (ARN) of the Predictor or Forecast used to create the Explainability.</p>
pub fn get_resource_arn(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_resource_arn()
}
/// <p>The configuration settings that define the granularity of time series and time points for the Explainability.</p>
pub fn explainability_config(mut self, input: crate::types::ExplainabilityConfig) -> Self {
self.inner = self.inner.explainability_config(input);
self
}
/// <p>The configuration settings that define the granularity of time series and time points for the Explainability.</p>
pub fn set_explainability_config(mut self, input: ::std::option::Option<crate::types::ExplainabilityConfig>) -> Self {
self.inner = self.inner.set_explainability_config(input);
self
}
/// <p>The configuration settings that define the granularity of time series and time points for the Explainability.</p>
pub fn get_explainability_config(&self) -> &::std::option::Option<crate::types::ExplainabilityConfig> {
self.inner.get_explainability_config()
}
/// <p>The source of your data, an Identity and Access Management (IAM) role that allows Amazon Forecast to access the data and, optionally, an Key Management Service (KMS) key.</p>
pub fn data_source(mut self, input: crate::types::DataSource) -> Self {
self.inner = self.inner.data_source(input);
self
}
/// <p>The source of your data, an Identity and Access Management (IAM) role that allows Amazon Forecast to access the data and, optionally, an Key Management Service (KMS) key.</p>
pub fn set_data_source(mut self, input: ::std::option::Option<crate::types::DataSource>) -> Self {
self.inner = self.inner.set_data_source(input);
self
}
/// <p>The source of your data, an Identity and Access Management (IAM) role that allows Amazon Forecast to access the data and, optionally, an Key Management Service (KMS) key.</p>
pub fn get_data_source(&self) -> &::std::option::Option<crate::types::DataSource> {
self.inner.get_data_source()
}
/// <p>Defines the fields of a dataset.</p>
pub fn schema(mut self, input: crate::types::Schema) -> Self {
self.inner = self.inner.schema(input);
self
}
/// <p>Defines the fields of a dataset.</p>
pub fn set_schema(mut self, input: ::std::option::Option<crate::types::Schema>) -> Self {
self.inner = self.inner.set_schema(input);
self
}
/// <p>Defines the fields of a dataset.</p>
pub fn get_schema(&self) -> &::std::option::Option<crate::types::Schema> {
self.inner.get_schema()
}
/// <p>Create an Explainability visualization that is viewable within the Amazon Web Services console.</p>
pub fn enable_visualization(mut self, input: bool) -> Self {
self.inner = self.inner.enable_visualization(input);
self
}
/// <p>Create an Explainability visualization that is viewable within the Amazon Web Services console.</p>
pub fn set_enable_visualization(mut self, input: ::std::option::Option<bool>) -> Self {
self.inner = self.inner.set_enable_visualization(input);
self
}
/// <p>Create an Explainability visualization that is viewable within the Amazon Web Services console.</p>
pub fn get_enable_visualization(&self) -> &::std::option::Option<bool> {
self.inner.get_enable_visualization()
}
/// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the first point for the Explainability.</p>
/// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
pub fn start_date_time(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.start_date_time(input.into());
self
}
/// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the first point for the Explainability.</p>
/// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
pub fn set_start_date_time(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_start_date_time(input);
self
}
/// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the first point for the Explainability.</p>
/// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
pub fn get_start_date_time(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_start_date_time()
}
/// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the last time point for the Explainability.</p>
/// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
pub fn end_date_time(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.end_date_time(input.into());
self
}
/// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the last time point for the Explainability.</p>
/// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
pub fn set_end_date_time(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_end_date_time(input);
self
}
/// <p>If <code>TimePointGranularity</code> is set to <code>SPECIFIC</code>, define the last time point for the Explainability.</p>
/// <p>Use the following timestamp format: yyyy-MM-ddTHH:mm:ss (example: 2015-01-01T20:00:00)</p>
pub fn get_end_date_time(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_end_date_time()
}
///
/// Appends an item to `Tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>Optional metadata to help you categorize and organize your resources. Each tag consists of a key and an optional value, both of which you define. Tag keys and values are case sensitive.</p>
/// <p>The following restrictions apply to tags:</p>
/// <ul>
/// <li>
/// <p>For each resource, each tag key must be unique and each tag key must have one value.</p></li>
/// <li>
/// <p>Maximum number of tags per resource: 50.</p></li>
/// <li>
/// <p>Maximum key length: 128 Unicode characters in UTF-8.</p></li>
/// <li>
/// <p>Maximum value length: 256 Unicode characters in UTF-8.</p></li>
/// <li>
/// <p>Accepted characters: all letters and numbers, spaces representable in UTF-8, and + - = . _ : / @. If your tagging schema is used across other services and resources, the character restrictions of those services also apply.</p></li>
/// <li>
/// <p>Key prefixes cannot include any upper or lowercase combination of <code>aws:</code> or <code>AWS:</code>. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit. You cannot edit or delete tag keys with this prefix.</p></li>
/// </ul>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
self.inner = self.inner.tags(input);
self
}
/// <p>Optional metadata to help you categorize and organize your resources. Each tag consists of a key and an optional value, both of which you define. Tag keys and values are case sensitive.</p>
/// <p>The following restrictions apply to tags:</p>
/// <ul>
/// <li>
/// <p>For each resource, each tag key must be unique and each tag key must have one value.</p></li>
/// <li>
/// <p>Maximum number of tags per resource: 50.</p></li>
/// <li>
/// <p>Maximum key length: 128 Unicode characters in UTF-8.</p></li>
/// <li>
/// <p>Maximum value length: 256 Unicode characters in UTF-8.</p></li>
/// <li>
/// <p>Accepted characters: all letters and numbers, spaces representable in UTF-8, and + - = . _ : / @. If your tagging schema is used across other services and resources, the character restrictions of those services also apply.</p></li>
/// <li>
/// <p>Key prefixes cannot include any upper or lowercase combination of <code>aws:</code> or <code>AWS:</code>. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit. You cannot edit or delete tag keys with this prefix.</p></li>
/// </ul>
pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
self.inner = self.inner.set_tags(input);
self
}
/// <p>Optional metadata to help you categorize and organize your resources. Each tag consists of a key and an optional value, both of which you define. Tag keys and values are case sensitive.</p>
/// <p>The following restrictions apply to tags:</p>
/// <ul>
/// <li>
/// <p>For each resource, each tag key must be unique and each tag key must have one value.</p></li>
/// <li>
/// <p>Maximum number of tags per resource: 50.</p></li>
/// <li>
/// <p>Maximum key length: 128 Unicode characters in UTF-8.</p></li>
/// <li>
/// <p>Maximum value length: 256 Unicode characters in UTF-8.</p></li>
/// <li>
/// <p>Accepted characters: all letters and numbers, spaces representable in UTF-8, and + - = . _ : / @. If your tagging schema is used across other services and resources, the character restrictions of those services also apply.</p></li>
/// <li>
/// <p>Key prefixes cannot include any upper or lowercase combination of <code>aws:</code> or <code>AWS:</code>. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit. You cannot edit or delete tag keys with this prefix.</p></li>
/// </ul>
pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
self.inner.get_tags()
}
}