1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_forecast::_create_forecast_output::CreateForecastOutputBuilder;
pub use crate::operation::create_forecast::_create_forecast_input::CreateForecastInputBuilder;
impl CreateForecastInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::create_forecast::CreateForecastOutput,
::aws_smithy_http::result::SdkError<
crate::operation::create_forecast::CreateForecastError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.create_forecast();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `CreateForecast`.
///
/// <p>Creates a forecast for each item in the <code>TARGET_TIME_SERIES</code> dataset that was used to train the predictor. This is known as inference. To retrieve the forecast for a single item at low latency, use the operation. To export the complete forecast into your Amazon Simple Storage Service (Amazon S3) bucket, use the <code>CreateForecastExportJob</code> operation.</p>
/// <p>The range of the forecast is determined by the <code>ForecastHorizon</code> value, which you specify in the <code>CreatePredictor</code> request. When you query a forecast, you can request a specific date range within the forecast.</p>
/// <p>To get a list of all your forecasts, use the <code>ListForecasts</code> operation.</p> <note>
/// <p>The forecasts generated by Amazon Forecast are in the same time zone as the dataset that was used to create the predictor.</p>
/// </note>
/// <p>For more information, see <code>howitworks-forecast</code>.</p> <note>
/// <p>The <code>Status</code> of the forecast must be <code>ACTIVE</code> before you can query or export the forecast. Use the <code>DescribeForecast</code> operation to get the status.</p>
/// </note>
/// <p>By default, a forecast includes predictions for every item (<code>item_id</code>) in the dataset group that was used to train the predictor. However, you can use the <code>TimeSeriesSelector</code> object to generate a forecast on a subset of time series. Forecast creation is skipped for any time series that you specify that are not in the input dataset. The forecast export file will not contain these time series or their forecasted values.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateForecastFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_forecast::builders::CreateForecastInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl CreateForecastFluentBuilder {
/// Creates a new `CreateForecast`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the CreateForecast as a reference.
pub fn as_input(&self) -> &crate::operation::create_forecast::builders::CreateForecastInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::create_forecast::CreateForecastOutput,
::aws_smithy_http::result::SdkError<
crate::operation::create_forecast::CreateForecastError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self.inner.build().map_err(::aws_smithy_http::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::create_forecast::CreateForecast::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::create_forecast::CreateForecast::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being
/// sent.
// TODO(enableNewSmithyRuntimeCleanup): Remove `async` and `Result` once we switch to orchestrator
pub async fn customize(
self,
) -> ::std::result::Result<
crate::client::customize::orchestrator::CustomizableOperation<
crate::operation::create_forecast::CreateForecastOutput,
crate::operation::create_forecast::CreateForecastError,
>,
::aws_smithy_http::result::SdkError<crate::operation::create_forecast::CreateForecastError>,
> {
::std::result::Result::Ok(crate::client::customize::orchestrator::CustomizableOperation {
customizable_send: ::std::boxed::Box::new(move |config_override| {
::std::boxed::Box::pin(async { self.config_override(config_override).send().await })
}),
config_override: None,
interceptors: vec![],
runtime_plugins: vec![],
})
}
pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
self.set_config_override(Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>A name for the forecast.</p>
pub fn forecast_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.forecast_name(input.into());
self
}
/// <p>A name for the forecast.</p>
pub fn set_forecast_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_forecast_name(input);
self
}
/// <p>A name for the forecast.</p>
pub fn get_forecast_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_forecast_name()
}
/// <p>The Amazon Resource Name (ARN) of the predictor to use to generate the forecast.</p>
pub fn predictor_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.predictor_arn(input.into());
self
}
/// <p>The Amazon Resource Name (ARN) of the predictor to use to generate the forecast.</p>
pub fn set_predictor_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_predictor_arn(input);
self
}
/// <p>The Amazon Resource Name (ARN) of the predictor to use to generate the forecast.</p>
pub fn get_predictor_arn(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_predictor_arn()
}
/// Appends an item to `ForecastTypes`.
///
/// To override the contents of this collection use [`set_forecast_types`](Self::set_forecast_types).
///
/// <p>The quantiles at which probabilistic forecasts are generated. <b>You can currently specify up to 5 quantiles per forecast</b>. Accepted values include <code>0.01 to 0.99</code> (increments of .01 only) and <code>mean</code>. The mean forecast is different from the median (0.50) when the distribution is not symmetric (for example, Beta and Negative Binomial). </p>
/// <p>The default quantiles are the quantiles you specified during predictor creation. If you didn't specify quantiles, the default values are <code>["0.1", "0.5", "0.9"]</code>. </p>
pub fn forecast_types(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.forecast_types(input.into());
self
}
/// <p>The quantiles at which probabilistic forecasts are generated. <b>You can currently specify up to 5 quantiles per forecast</b>. Accepted values include <code>0.01 to 0.99</code> (increments of .01 only) and <code>mean</code>. The mean forecast is different from the median (0.50) when the distribution is not symmetric (for example, Beta and Negative Binomial). </p>
/// <p>The default quantiles are the quantiles you specified during predictor creation. If you didn't specify quantiles, the default values are <code>["0.1", "0.5", "0.9"]</code>. </p>
pub fn set_forecast_types(mut self, input: ::std::option::Option<::std::vec::Vec<::std::string::String>>) -> Self {
self.inner = self.inner.set_forecast_types(input);
self
}
/// <p>The quantiles at which probabilistic forecasts are generated. <b>You can currently specify up to 5 quantiles per forecast</b>. Accepted values include <code>0.01 to 0.99</code> (increments of .01 only) and <code>mean</code>. The mean forecast is different from the median (0.50) when the distribution is not symmetric (for example, Beta and Negative Binomial). </p>
/// <p>The default quantiles are the quantiles you specified during predictor creation. If you didn't specify quantiles, the default values are <code>["0.1", "0.5", "0.9"]</code>. </p>
pub fn get_forecast_types(&self) -> &::std::option::Option<::std::vec::Vec<::std::string::String>> {
self.inner.get_forecast_types()
}
/// Appends an item to `Tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>The optional metadata that you apply to the forecast to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
/// <p>The following basic restrictions apply to tags:</p>
/// <ul>
/// <li> <p>Maximum number of tags per resource - 50.</p> </li>
/// <li> <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p> </li>
/// <li> <p>Maximum key length - 128 Unicode characters in UTF-8.</p> </li>
/// <li> <p>Maximum value length - 256 Unicode characters in UTF-8.</p> </li>
/// <li> <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p> </li>
/// <li> <p>Tag keys and values are case sensitive.</p> </li>
/// <li> <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p> </li>
/// </ul>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
self.inner = self.inner.tags(input);
self
}
/// <p>The optional metadata that you apply to the forecast to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
/// <p>The following basic restrictions apply to tags:</p>
/// <ul>
/// <li> <p>Maximum number of tags per resource - 50.</p> </li>
/// <li> <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p> </li>
/// <li> <p>Maximum key length - 128 Unicode characters in UTF-8.</p> </li>
/// <li> <p>Maximum value length - 256 Unicode characters in UTF-8.</p> </li>
/// <li> <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p> </li>
/// <li> <p>Tag keys and values are case sensitive.</p> </li>
/// <li> <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p> </li>
/// </ul>
pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
self.inner = self.inner.set_tags(input);
self
}
/// <p>The optional metadata that you apply to the forecast to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
/// <p>The following basic restrictions apply to tags:</p>
/// <ul>
/// <li> <p>Maximum number of tags per resource - 50.</p> </li>
/// <li> <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p> </li>
/// <li> <p>Maximum key length - 128 Unicode characters in UTF-8.</p> </li>
/// <li> <p>Maximum value length - 256 Unicode characters in UTF-8.</p> </li>
/// <li> <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p> </li>
/// <li> <p>Tag keys and values are case sensitive.</p> </li>
/// <li> <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p> </li>
/// </ul>
pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
self.inner.get_tags()
}
/// <p>Defines the set of time series that are used to create the forecasts in a <code>TimeSeriesIdentifiers</code> object.</p>
/// <p>The <code>TimeSeriesIdentifiers</code> object needs the following information:</p>
/// <ul>
/// <li> <p> <code>DataSource</code> </p> </li>
/// <li> <p> <code>Format</code> </p> </li>
/// <li> <p> <code>Schema</code> </p> </li>
/// </ul>
pub fn time_series_selector(mut self, input: crate::types::TimeSeriesSelector) -> Self {
self.inner = self.inner.time_series_selector(input);
self
}
/// <p>Defines the set of time series that are used to create the forecasts in a <code>TimeSeriesIdentifiers</code> object.</p>
/// <p>The <code>TimeSeriesIdentifiers</code> object needs the following information:</p>
/// <ul>
/// <li> <p> <code>DataSource</code> </p> </li>
/// <li> <p> <code>Format</code> </p> </li>
/// <li> <p> <code>Schema</code> </p> </li>
/// </ul>
pub fn set_time_series_selector(mut self, input: ::std::option::Option<crate::types::TimeSeriesSelector>) -> Self {
self.inner = self.inner.set_time_series_selector(input);
self
}
/// <p>Defines the set of time series that are used to create the forecasts in a <code>TimeSeriesIdentifiers</code> object.</p>
/// <p>The <code>TimeSeriesIdentifiers</code> object needs the following information:</p>
/// <ul>
/// <li> <p> <code>DataSource</code> </p> </li>
/// <li> <p> <code>Format</code> </p> </li>
/// <li> <p> <code>Schema</code> </p> </li>
/// </ul>
pub fn get_time_series_selector(&self) -> &::std::option::Option<crate::types::TimeSeriesSelector> {
self.inner.get_time_series_selector()
}
}