aws_sdk_ecs/operation/create_express_gateway_service/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_express_gateway_service::_create_express_gateway_service_output::CreateExpressGatewayServiceOutputBuilder;
3
4pub use crate::operation::create_express_gateway_service::_create_express_gateway_service_input::CreateExpressGatewayServiceInputBuilder;
5
6impl crate::operation::create_express_gateway_service::builders::CreateExpressGatewayServiceInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_express_gateway_service();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreateExpressGatewayService`.
24///
25/// <p>Creates an Express service that simplifies deploying containerized web applications on Amazon ECS with managed Amazon Web Services infrastructure. This operation provisions and configures Application Load Balancers, target groups, security groups, and auto-scaling policies automatically.</p>
26/// <p>Specify a primary container configuration with your application image and basic settings. Amazon ECS creates the necessary Amazon Web Services resources for traffic distribution, health monitoring, network access control, and capacity management.</p>
27/// <p>Provide an execution role for task operations and an infrastructure role for managing Amazon Web Services resources on your behalf.</p>
28#[derive(::std::clone::Clone, ::std::fmt::Debug)]
29pub struct CreateExpressGatewayServiceFluentBuilder {
30 handle: ::std::sync::Arc<crate::client::Handle>,
31 inner: crate::operation::create_express_gateway_service::builders::CreateExpressGatewayServiceInputBuilder,
32 config_override: ::std::option::Option<crate::config::Builder>,
33}
34impl
35 crate::client::customize::internal::CustomizableSend<
36 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceOutput,
37 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceError,
38 > for CreateExpressGatewayServiceFluentBuilder
39{
40 fn send(
41 self,
42 config_override: crate::config::Builder,
43 ) -> crate::client::customize::internal::BoxFuture<
44 crate::client::customize::internal::SendResult<
45 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceOutput,
46 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceError,
47 >,
48 > {
49 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
50 }
51}
52impl CreateExpressGatewayServiceFluentBuilder {
53 /// Creates a new `CreateExpressGatewayServiceFluentBuilder`.
54 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
55 Self {
56 handle,
57 inner: ::std::default::Default::default(),
58 config_override: ::std::option::Option::None,
59 }
60 }
61 /// Access the CreateExpressGatewayService as a reference.
62 pub fn as_input(&self) -> &crate::operation::create_express_gateway_service::builders::CreateExpressGatewayServiceInputBuilder {
63 &self.inner
64 }
65 /// Sends the request and returns the response.
66 ///
67 /// If an error occurs, an `SdkError` will be returned with additional details that
68 /// can be matched against.
69 ///
70 /// By default, any retryable failures will be retried twice. Retry behavior
71 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
72 /// set when configuring the client.
73 pub async fn send(
74 self,
75 ) -> ::std::result::Result<
76 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceOutput,
77 ::aws_smithy_runtime_api::client::result::SdkError<
78 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceError,
79 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
80 >,
81 > {
82 let input = self
83 .inner
84 .build()
85 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
86 let runtime_plugins = crate::operation::create_express_gateway_service::CreateExpressGatewayService::operation_runtime_plugins(
87 self.handle.runtime_plugins.clone(),
88 &self.handle.conf,
89 self.config_override,
90 );
91 crate::operation::create_express_gateway_service::CreateExpressGatewayService::orchestrate(&runtime_plugins, input).await
92 }
93
94 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
95 pub fn customize(
96 self,
97 ) -> crate::client::customize::CustomizableOperation<
98 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceOutput,
99 crate::operation::create_express_gateway_service::CreateExpressGatewayServiceError,
100 Self,
101 > {
102 crate::client::customize::CustomizableOperation::new(self)
103 }
104 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
105 self.set_config_override(::std::option::Option::Some(config_override.into()));
106 self
107 }
108
109 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
110 self.config_override = config_override;
111 self
112 }
113 /// <p>The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make Amazon Web Services API calls on your behalf. This role is required for Amazon ECS to pull container images from Amazon ECR, send container logs to Amazon CloudWatch Logs, and retrieve sensitive data from Amazon Web Services Systems Manager Parameter Store or Amazon Web Services Secrets Manager.</p>
114 /// <p>The execution role must include the <code>AmazonECSTaskExecutionRolePolicy</code> managed policy or equivalent permissions. For Express services, this role is used during task startup and runtime for container management operations.</p>
115 pub fn execution_role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
116 self.inner = self.inner.execution_role_arn(input.into());
117 self
118 }
119 /// <p>The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make Amazon Web Services API calls on your behalf. This role is required for Amazon ECS to pull container images from Amazon ECR, send container logs to Amazon CloudWatch Logs, and retrieve sensitive data from Amazon Web Services Systems Manager Parameter Store or Amazon Web Services Secrets Manager.</p>
120 /// <p>The execution role must include the <code>AmazonECSTaskExecutionRolePolicy</code> managed policy or equivalent permissions. For Express services, this role is used during task startup and runtime for container management operations.</p>
121 pub fn set_execution_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
122 self.inner = self.inner.set_execution_role_arn(input);
123 self
124 }
125 /// <p>The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make Amazon Web Services API calls on your behalf. This role is required for Amazon ECS to pull container images from Amazon ECR, send container logs to Amazon CloudWatch Logs, and retrieve sensitive data from Amazon Web Services Systems Manager Parameter Store or Amazon Web Services Secrets Manager.</p>
126 /// <p>The execution role must include the <code>AmazonECSTaskExecutionRolePolicy</code> managed policy or equivalent permissions. For Express services, this role is used during task startup and runtime for container management operations.</p>
127 pub fn get_execution_role_arn(&self) -> &::std::option::Option<::std::string::String> {
128 self.inner.get_execution_role_arn()
129 }
130 /// <p>The Amazon Resource Name (ARN) of the infrastructure role that grants Amazon ECS permission to create and manage Amazon Web Services resources on your behalf for the Express service. This role is used to provision and manage Application Load Balancers, target groups, security groups, auto-scaling policies, and other Amazon Web Services infrastructure components.</p>
131 /// <p>The infrastructure role must include permissions for Elastic Load Balancing, Application Auto Scaling, Amazon EC2 (for security groups), and other services required for managed infrastructure. This role is only used during Express service creation, updates, and deletion operations.</p>
132 pub fn infrastructure_role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
133 self.inner = self.inner.infrastructure_role_arn(input.into());
134 self
135 }
136 /// <p>The Amazon Resource Name (ARN) of the infrastructure role that grants Amazon ECS permission to create and manage Amazon Web Services resources on your behalf for the Express service. This role is used to provision and manage Application Load Balancers, target groups, security groups, auto-scaling policies, and other Amazon Web Services infrastructure components.</p>
137 /// <p>The infrastructure role must include permissions for Elastic Load Balancing, Application Auto Scaling, Amazon EC2 (for security groups), and other services required for managed infrastructure. This role is only used during Express service creation, updates, and deletion operations.</p>
138 pub fn set_infrastructure_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
139 self.inner = self.inner.set_infrastructure_role_arn(input);
140 self
141 }
142 /// <p>The Amazon Resource Name (ARN) of the infrastructure role that grants Amazon ECS permission to create and manage Amazon Web Services resources on your behalf for the Express service. This role is used to provision and manage Application Load Balancers, target groups, security groups, auto-scaling policies, and other Amazon Web Services infrastructure components.</p>
143 /// <p>The infrastructure role must include permissions for Elastic Load Balancing, Application Auto Scaling, Amazon EC2 (for security groups), and other services required for managed infrastructure. This role is only used during Express service creation, updates, and deletion operations.</p>
144 pub fn get_infrastructure_role_arn(&self) -> &::std::option::Option<::std::string::String> {
145 self.inner.get_infrastructure_role_arn()
146 }
147 /// <p>The name of the Express service. This name must be unique within the specified cluster and can contain up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens. The name is used to identify the service in the Amazon ECS console and API operations.</p>
148 /// <p>If you don't specify a service name, Amazon ECS generates a unique name for the service. The service name becomes part of the service ARN and cannot be changed after the service is created.</p>
149 pub fn service_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
150 self.inner = self.inner.service_name(input.into());
151 self
152 }
153 /// <p>The name of the Express service. This name must be unique within the specified cluster and can contain up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens. The name is used to identify the service in the Amazon ECS console and API operations.</p>
154 /// <p>If you don't specify a service name, Amazon ECS generates a unique name for the service. The service name becomes part of the service ARN and cannot be changed after the service is created.</p>
155 pub fn set_service_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
156 self.inner = self.inner.set_service_name(input);
157 self
158 }
159 /// <p>The name of the Express service. This name must be unique within the specified cluster and can contain up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens. The name is used to identify the service in the Amazon ECS console and API operations.</p>
160 /// <p>If you don't specify a service name, Amazon ECS generates a unique name for the service. The service name becomes part of the service ARN and cannot be changed after the service is created.</p>
161 pub fn get_service_name(&self) -> &::std::option::Option<::std::string::String> {
162 self.inner.get_service_name()
163 }
164 /// <p>The short name or full Amazon Resource Name (ARN) of the cluster on which to create the Express service. If you do not specify a cluster, the <code>default</code> cluster is assumed.</p>
165 pub fn cluster(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
166 self.inner = self.inner.cluster(input.into());
167 self
168 }
169 /// <p>The short name or full Amazon Resource Name (ARN) of the cluster on which to create the Express service. If you do not specify a cluster, the <code>default</code> cluster is assumed.</p>
170 pub fn set_cluster(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
171 self.inner = self.inner.set_cluster(input);
172 self
173 }
174 /// <p>The short name or full Amazon Resource Name (ARN) of the cluster on which to create the Express service. If you do not specify a cluster, the <code>default</code> cluster is assumed.</p>
175 pub fn get_cluster(&self) -> &::std::option::Option<::std::string::String> {
176 self.inner.get_cluster()
177 }
178 /// <p>The path on the container that the Application Load Balancer uses for health checks. This should be a valid HTTP endpoint that returns a successful response (HTTP 200) when the application is healthy.</p>
179 /// <p>If not specified, the default health check path is <code>/ping</code>. The health check path must start with a forward slash and can include query parameters. Examples: <code>/health</code>, <code>/api/status</code>, <code>/ping?format=json</code>.</p>
180 pub fn health_check_path(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
181 self.inner = self.inner.health_check_path(input.into());
182 self
183 }
184 /// <p>The path on the container that the Application Load Balancer uses for health checks. This should be a valid HTTP endpoint that returns a successful response (HTTP 200) when the application is healthy.</p>
185 /// <p>If not specified, the default health check path is <code>/ping</code>. The health check path must start with a forward slash and can include query parameters. Examples: <code>/health</code>, <code>/api/status</code>, <code>/ping?format=json</code>.</p>
186 pub fn set_health_check_path(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
187 self.inner = self.inner.set_health_check_path(input);
188 self
189 }
190 /// <p>The path on the container that the Application Load Balancer uses for health checks. This should be a valid HTTP endpoint that returns a successful response (HTTP 200) when the application is healthy.</p>
191 /// <p>If not specified, the default health check path is <code>/ping</code>. The health check path must start with a forward slash and can include query parameters. Examples: <code>/health</code>, <code>/api/status</code>, <code>/ping?format=json</code>.</p>
192 pub fn get_health_check_path(&self) -> &::std::option::Option<::std::string::String> {
193 self.inner.get_health_check_path()
194 }
195 /// <p>The primary container configuration for the Express service. This defines the main application container that will receive traffic from the Application Load Balancer.</p>
196 /// <p>The primary container must specify at minimum a container image. You can also configure the container port (defaults to 80), logging configuration, environment variables, secrets, and startup commands. The container image can be from Amazon ECR, Docker Hub, or any other container registry accessible to your execution role.</p>
197 pub fn primary_container(mut self, input: crate::types::ExpressGatewayContainer) -> Self {
198 self.inner = self.inner.primary_container(input);
199 self
200 }
201 /// <p>The primary container configuration for the Express service. This defines the main application container that will receive traffic from the Application Load Balancer.</p>
202 /// <p>The primary container must specify at minimum a container image. You can also configure the container port (defaults to 80), logging configuration, environment variables, secrets, and startup commands. The container image can be from Amazon ECR, Docker Hub, or any other container registry accessible to your execution role.</p>
203 pub fn set_primary_container(mut self, input: ::std::option::Option<crate::types::ExpressGatewayContainer>) -> Self {
204 self.inner = self.inner.set_primary_container(input);
205 self
206 }
207 /// <p>The primary container configuration for the Express service. This defines the main application container that will receive traffic from the Application Load Balancer.</p>
208 /// <p>The primary container must specify at minimum a container image. You can also configure the container port (defaults to 80), logging configuration, environment variables, secrets, and startup commands. The container image can be from Amazon ECR, Docker Hub, or any other container registry accessible to your execution role.</p>
209 pub fn get_primary_container(&self) -> &::std::option::Option<crate::types::ExpressGatewayContainer> {
210 self.inner.get_primary_container()
211 }
212 /// <p>The Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. This role allows your application code to access other Amazon Web Services services securely.</p>
213 /// <p>The task role is different from the execution role. While the execution role is used by the Amazon ECS agent to set up the task, the task role is used by your application code running inside the container to make Amazon Web Services API calls. If your application doesn't need to access Amazon Web Services services, you can omit this parameter.</p>
214 pub fn task_role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
215 self.inner = self.inner.task_role_arn(input.into());
216 self
217 }
218 /// <p>The Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. This role allows your application code to access other Amazon Web Services services securely.</p>
219 /// <p>The task role is different from the execution role. While the execution role is used by the Amazon ECS agent to set up the task, the task role is used by your application code running inside the container to make Amazon Web Services API calls. If your application doesn't need to access Amazon Web Services services, you can omit this parameter.</p>
220 pub fn set_task_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
221 self.inner = self.inner.set_task_role_arn(input);
222 self
223 }
224 /// <p>The Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. This role allows your application code to access other Amazon Web Services services securely.</p>
225 /// <p>The task role is different from the execution role. While the execution role is used by the Amazon ECS agent to set up the task, the task role is used by your application code running inside the container to make Amazon Web Services API calls. If your application doesn't need to access Amazon Web Services services, you can omit this parameter.</p>
226 pub fn get_task_role_arn(&self) -> &::std::option::Option<::std::string::String> {
227 self.inner.get_task_role_arn()
228 }
229 /// <p>The network configuration for the Express service tasks. This specifies the VPC subnets and security groups for the tasks.</p>
230 /// <p>For Express services, you can specify custom security groups and subnets. If not provided, Amazon ECS will use the default VPC configuration and create appropriate security groups automatically. The network configuration determines how your service integrates with your VPC and what network access it has.</p>
231 pub fn network_configuration(mut self, input: crate::types::ExpressGatewayServiceNetworkConfiguration) -> Self {
232 self.inner = self.inner.network_configuration(input);
233 self
234 }
235 /// <p>The network configuration for the Express service tasks. This specifies the VPC subnets and security groups for the tasks.</p>
236 /// <p>For Express services, you can specify custom security groups and subnets. If not provided, Amazon ECS will use the default VPC configuration and create appropriate security groups automatically. The network configuration determines how your service integrates with your VPC and what network access it has.</p>
237 pub fn set_network_configuration(mut self, input: ::std::option::Option<crate::types::ExpressGatewayServiceNetworkConfiguration>) -> Self {
238 self.inner = self.inner.set_network_configuration(input);
239 self
240 }
241 /// <p>The network configuration for the Express service tasks. This specifies the VPC subnets and security groups for the tasks.</p>
242 /// <p>For Express services, you can specify custom security groups and subnets. If not provided, Amazon ECS will use the default VPC configuration and create appropriate security groups automatically. The network configuration determines how your service integrates with your VPC and what network access it has.</p>
243 pub fn get_network_configuration(&self) -> &::std::option::Option<crate::types::ExpressGatewayServiceNetworkConfiguration> {
244 self.inner.get_network_configuration()
245 }
246 /// <p>The number of CPU units used by the task. This parameter determines the CPU allocation for each task in the Express service. The default value for an Express service is 256 (.25 vCPU).</p>
247 pub fn cpu(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
248 self.inner = self.inner.cpu(input.into());
249 self
250 }
251 /// <p>The number of CPU units used by the task. This parameter determines the CPU allocation for each task in the Express service. The default value for an Express service is 256 (.25 vCPU).</p>
252 pub fn set_cpu(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
253 self.inner = self.inner.set_cpu(input);
254 self
255 }
256 /// <p>The number of CPU units used by the task. This parameter determines the CPU allocation for each task in the Express service. The default value for an Express service is 256 (.25 vCPU).</p>
257 pub fn get_cpu(&self) -> &::std::option::Option<::std::string::String> {
258 self.inner.get_cpu()
259 }
260 /// <p>The amount of memory (in MiB) used by the task. This parameter determines the memory allocation for each task in the Express service. The default value for an express service is 512 MiB.</p>
261 pub fn memory(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
262 self.inner = self.inner.memory(input.into());
263 self
264 }
265 /// <p>The amount of memory (in MiB) used by the task. This parameter determines the memory allocation for each task in the Express service. The default value for an express service is 512 MiB.</p>
266 pub fn set_memory(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
267 self.inner = self.inner.set_memory(input);
268 self
269 }
270 /// <p>The amount of memory (in MiB) used by the task. This parameter determines the memory allocation for each task in the Express service. The default value for an express service is 512 MiB.</p>
271 pub fn get_memory(&self) -> &::std::option::Option<::std::string::String> {
272 self.inner.get_memory()
273 }
274 /// <p>The auto-scaling configuration for the Express service. This defines how the service automatically adjusts the number of running tasks based on demand.</p>
275 /// <p>You can specify the minimum and maximum number of tasks, the scaling metric (CPU utilization, memory utilization, or request count per target), and the target value for the metric. If not specified, the default target value for an Express service is 60.</p>
276 pub fn scaling_target(mut self, input: crate::types::ExpressGatewayScalingTarget) -> Self {
277 self.inner = self.inner.scaling_target(input);
278 self
279 }
280 /// <p>The auto-scaling configuration for the Express service. This defines how the service automatically adjusts the number of running tasks based on demand.</p>
281 /// <p>You can specify the minimum and maximum number of tasks, the scaling metric (CPU utilization, memory utilization, or request count per target), and the target value for the metric. If not specified, the default target value for an Express service is 60.</p>
282 pub fn set_scaling_target(mut self, input: ::std::option::Option<crate::types::ExpressGatewayScalingTarget>) -> Self {
283 self.inner = self.inner.set_scaling_target(input);
284 self
285 }
286 /// <p>The auto-scaling configuration for the Express service. This defines how the service automatically adjusts the number of running tasks based on demand.</p>
287 /// <p>You can specify the minimum and maximum number of tasks, the scaling metric (CPU utilization, memory utilization, or request count per target), and the target value for the metric. If not specified, the default target value for an Express service is 60.</p>
288 pub fn get_scaling_target(&self) -> &::std::option::Option<crate::types::ExpressGatewayScalingTarget> {
289 self.inner.get_scaling_target()
290 }
291 ///
292 /// Appends an item to `tags`.
293 ///
294 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
295 ///
296 /// <p>The metadata that you apply to the Express service to help categorize and organize it. Each tag consists of a key and an optional value. You can apply up to 50 tags to a service.</p>
297 pub fn tags(mut self, input: crate::types::Tag) -> Self {
298 self.inner = self.inner.tags(input);
299 self
300 }
301 /// <p>The metadata that you apply to the Express service to help categorize and organize it. Each tag consists of a key and an optional value. You can apply up to 50 tags to a service.</p>
302 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
303 self.inner = self.inner.set_tags(input);
304 self
305 }
306 /// <p>The metadata that you apply to the Express service to help categorize and organize it. Each tag consists of a key and an optional value. You can apply up to 50 tags to a service.</p>
307 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
308 self.inner.get_tags()
309 }
310}