aws_sdk_ecs/operation/register_task_definition/builders.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::register_task_definition::_register_task_definition_output::RegisterTaskDefinitionOutputBuilder;
pub use crate::operation::register_task_definition::_register_task_definition_input::RegisterTaskDefinitionInputBuilder;
impl crate::operation::register_task_definition::builders::RegisterTaskDefinitionInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::register_task_definition::RegisterTaskDefinitionOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::register_task_definition::RegisterTaskDefinitionError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.register_task_definition();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `RegisterTaskDefinition`.
///
/// <p>Registers a new task definition from the supplied <code>family</code> and <code>containerDefinitions</code>. Optionally, you can add data volumes to your containers with the <code>volumes</code> parameter. For more information about task definition parameters and defaults, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html">Amazon ECS Task Definitions</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
/// <p>You can specify a role for your task with the <code>taskRoleArn</code> parameter. When you specify a role for a task, its containers can then use the latest versions of the CLI or SDKs to make API requests to the Amazon Web Services services that are specified in the policy that's associated with the role. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html">IAM Roles for Tasks</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
/// <p>You can specify a Docker networking mode for the containers in your task definition with the <code>networkMode</code> parameter. If you specify the <code>awsvpc</code> network mode, the task is allocated an elastic network interface, and you must specify a <a href="https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_NetworkConfiguration.html">NetworkConfiguration</a> when you create a service or run a task with the task definition. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html">Task Networking</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct RegisterTaskDefinitionFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::register_task_definition::builders::RegisterTaskDefinitionInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::register_task_definition::RegisterTaskDefinitionOutput,
crate::operation::register_task_definition::RegisterTaskDefinitionError,
> for RegisterTaskDefinitionFluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::register_task_definition::RegisterTaskDefinitionOutput,
crate::operation::register_task_definition::RegisterTaskDefinitionError,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl RegisterTaskDefinitionFluentBuilder {
/// Creates a new `RegisterTaskDefinitionFluentBuilder`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the RegisterTaskDefinition as a reference.
pub fn as_input(&self) -> &crate::operation::register_task_definition::builders::RegisterTaskDefinitionInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::register_task_definition::RegisterTaskDefinitionOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::register_task_definition::RegisterTaskDefinitionError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::register_task_definition::RegisterTaskDefinition::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::register_task_definition::RegisterTaskDefinition::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::register_task_definition::RegisterTaskDefinitionOutput,
crate::operation::register_task_definition::RegisterTaskDefinitionError,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
self.set_config_override(::std::option::Option::Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>You must specify a <code>family</code> for a task definition. You can use it track multiple versions of the same task definition. The <code>family</code> is used as a name for your task definition. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.</p>
pub fn family(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.family(input.into());
self
}
/// <p>You must specify a <code>family</code> for a task definition. You can use it track multiple versions of the same task definition. The <code>family</code> is used as a name for your task definition. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.</p>
pub fn set_family(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_family(input);
self
}
/// <p>You must specify a <code>family</code> for a task definition. You can use it track multiple versions of the same task definition. The <code>family</code> is used as a name for your task definition. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.</p>
pub fn get_family(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_family()
}
/// <p>The short name or full Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. All containers in this task are granted the permissions that are specified in this role. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html">IAM Roles for Tasks</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
pub fn task_role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.task_role_arn(input.into());
self
}
/// <p>The short name or full Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. All containers in this task are granted the permissions that are specified in this role. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html">IAM Roles for Tasks</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
pub fn set_task_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_task_role_arn(input);
self
}
/// <p>The short name or full Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. All containers in this task are granted the permissions that are specified in this role. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html">IAM Roles for Tasks</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
pub fn get_task_role_arn(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_task_role_arn()
}
/// <p>The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make Amazon Web Services API calls on your behalf. For informationabout the required IAM roles for Amazon ECS, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-ecs-iam-role-overview.html">IAM roles for Amazon ECS</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
pub fn execution_role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.execution_role_arn(input.into());
self
}
/// <p>The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make Amazon Web Services API calls on your behalf. For informationabout the required IAM roles for Amazon ECS, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-ecs-iam-role-overview.html">IAM roles for Amazon ECS</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
pub fn set_execution_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_execution_role_arn(input);
self
}
/// <p>The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make Amazon Web Services API calls on your behalf. For informationabout the required IAM roles for Amazon ECS, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-ecs-iam-role-overview.html">IAM roles for Amazon ECS</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
pub fn get_execution_role_arn(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_execution_role_arn()
}
/// <p>The Docker networking mode to use for the containers in the task. The valid values are <code>none</code>, <code>bridge</code>, <code>awsvpc</code>, and <code>host</code>. If no network mode is specified, the default is <code>bridge</code>.</p>
/// <p>For Amazon ECS tasks on Fargate, the <code>awsvpc</code> network mode is required. For Amazon ECS tasks on Amazon EC2 Linux instances, any network mode can be used. For Amazon ECS tasks on Amazon EC2 Windows instances, <code><default></default></code> or <code>awsvpc</code> can be used. If the network mode is set to <code>none</code>, you cannot specify port mappings in your container definitions, and the tasks containers do not have external connectivity. The <code>host</code> and <code>awsvpc</code> network modes offer the highest networking performance for containers because they use the EC2 network stack instead of the virtualized network stack provided by the <code>bridge</code> mode.</p>
/// <p>With the <code>host</code> and <code>awsvpc</code> network modes, exposed container ports are mapped directly to the corresponding host port (for the <code>host</code> network mode) or the attached elastic network interface port (for the <code>awsvpc</code> network mode), so you cannot take advantage of dynamic host port mappings.</p><important>
/// <p>When using the <code>host</code> network mode, you should not run containers using the root user (UID 0). It is considered best practice to use a non-root user.</p>
/// </important>
/// <p>If the network mode is <code>awsvpc</code>, the task is allocated an elastic network interface, and you must specify a <a href="https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_NetworkConfiguration.html">NetworkConfiguration</a> value when you create a service or run a task with the task definition. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html">Task Networking</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
/// <p>If the network mode is <code>host</code>, you cannot run multiple instantiations of the same task on a single container instance when port mappings are used.</p>
pub fn network_mode(mut self, input: crate::types::NetworkMode) -> Self {
self.inner = self.inner.network_mode(input);
self
}
/// <p>The Docker networking mode to use for the containers in the task. The valid values are <code>none</code>, <code>bridge</code>, <code>awsvpc</code>, and <code>host</code>. If no network mode is specified, the default is <code>bridge</code>.</p>
/// <p>For Amazon ECS tasks on Fargate, the <code>awsvpc</code> network mode is required. For Amazon ECS tasks on Amazon EC2 Linux instances, any network mode can be used. For Amazon ECS tasks on Amazon EC2 Windows instances, <code><default></default></code> or <code>awsvpc</code> can be used. If the network mode is set to <code>none</code>, you cannot specify port mappings in your container definitions, and the tasks containers do not have external connectivity. The <code>host</code> and <code>awsvpc</code> network modes offer the highest networking performance for containers because they use the EC2 network stack instead of the virtualized network stack provided by the <code>bridge</code> mode.</p>
/// <p>With the <code>host</code> and <code>awsvpc</code> network modes, exposed container ports are mapped directly to the corresponding host port (for the <code>host</code> network mode) or the attached elastic network interface port (for the <code>awsvpc</code> network mode), so you cannot take advantage of dynamic host port mappings.</p><important>
/// <p>When using the <code>host</code> network mode, you should not run containers using the root user (UID 0). It is considered best practice to use a non-root user.</p>
/// </important>
/// <p>If the network mode is <code>awsvpc</code>, the task is allocated an elastic network interface, and you must specify a <a href="https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_NetworkConfiguration.html">NetworkConfiguration</a> value when you create a service or run a task with the task definition. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html">Task Networking</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
/// <p>If the network mode is <code>host</code>, you cannot run multiple instantiations of the same task on a single container instance when port mappings are used.</p>
pub fn set_network_mode(mut self, input: ::std::option::Option<crate::types::NetworkMode>) -> Self {
self.inner = self.inner.set_network_mode(input);
self
}
/// <p>The Docker networking mode to use for the containers in the task. The valid values are <code>none</code>, <code>bridge</code>, <code>awsvpc</code>, and <code>host</code>. If no network mode is specified, the default is <code>bridge</code>.</p>
/// <p>For Amazon ECS tasks on Fargate, the <code>awsvpc</code> network mode is required. For Amazon ECS tasks on Amazon EC2 Linux instances, any network mode can be used. For Amazon ECS tasks on Amazon EC2 Windows instances, <code><default></default></code> or <code>awsvpc</code> can be used. If the network mode is set to <code>none</code>, you cannot specify port mappings in your container definitions, and the tasks containers do not have external connectivity. The <code>host</code> and <code>awsvpc</code> network modes offer the highest networking performance for containers because they use the EC2 network stack instead of the virtualized network stack provided by the <code>bridge</code> mode.</p>
/// <p>With the <code>host</code> and <code>awsvpc</code> network modes, exposed container ports are mapped directly to the corresponding host port (for the <code>host</code> network mode) or the attached elastic network interface port (for the <code>awsvpc</code> network mode), so you cannot take advantage of dynamic host port mappings.</p><important>
/// <p>When using the <code>host</code> network mode, you should not run containers using the root user (UID 0). It is considered best practice to use a non-root user.</p>
/// </important>
/// <p>If the network mode is <code>awsvpc</code>, the task is allocated an elastic network interface, and you must specify a <a href="https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_NetworkConfiguration.html">NetworkConfiguration</a> value when you create a service or run a task with the task definition. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html">Task Networking</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
/// <p>If the network mode is <code>host</code>, you cannot run multiple instantiations of the same task on a single container instance when port mappings are used.</p>
pub fn get_network_mode(&self) -> &::std::option::Option<crate::types::NetworkMode> {
self.inner.get_network_mode()
}
///
/// Appends an item to `containerDefinitions`.
///
/// To override the contents of this collection use [`set_container_definitions`](Self::set_container_definitions).
///
/// <p>A list of container definitions in JSON format that describe the different containers that make up your task.</p>
pub fn container_definitions(mut self, input: crate::types::ContainerDefinition) -> Self {
self.inner = self.inner.container_definitions(input);
self
}
/// <p>A list of container definitions in JSON format that describe the different containers that make up your task.</p>
pub fn set_container_definitions(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::ContainerDefinition>>) -> Self {
self.inner = self.inner.set_container_definitions(input);
self
}
/// <p>A list of container definitions in JSON format that describe the different containers that make up your task.</p>
pub fn get_container_definitions(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::ContainerDefinition>> {
self.inner.get_container_definitions()
}
///
/// Appends an item to `volumes`.
///
/// To override the contents of this collection use [`set_volumes`](Self::set_volumes).
///
/// <p>A list of volume definitions in JSON format that containers in your task might use.</p>
pub fn volumes(mut self, input: crate::types::Volume) -> Self {
self.inner = self.inner.volumes(input);
self
}
/// <p>A list of volume definitions in JSON format that containers in your task might use.</p>
pub fn set_volumes(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Volume>>) -> Self {
self.inner = self.inner.set_volumes(input);
self
}
/// <p>A list of volume definitions in JSON format that containers in your task might use.</p>
pub fn get_volumes(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Volume>> {
self.inner.get_volumes()
}
///
/// Appends an item to `placementConstraints`.
///
/// To override the contents of this collection use [`set_placement_constraints`](Self::set_placement_constraints).
///
/// <p>An array of placement constraint objects to use for the task. You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime.</p>
pub fn placement_constraints(mut self, input: crate::types::TaskDefinitionPlacementConstraint) -> Self {
self.inner = self.inner.placement_constraints(input);
self
}
/// <p>An array of placement constraint objects to use for the task. You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime.</p>
pub fn set_placement_constraints(
mut self,
input: ::std::option::Option<::std::vec::Vec<crate::types::TaskDefinitionPlacementConstraint>>,
) -> Self {
self.inner = self.inner.set_placement_constraints(input);
self
}
/// <p>An array of placement constraint objects to use for the task. You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime.</p>
pub fn get_placement_constraints(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::TaskDefinitionPlacementConstraint>> {
self.inner.get_placement_constraints()
}
///
/// Appends an item to `requiresCompatibilities`.
///
/// To override the contents of this collection use [`set_requires_compatibilities`](Self::set_requires_compatibilities).
///
/// <p>The task launch type that Amazon ECS validates the task definition against. A client exception is returned if the task definition doesn't validate against the compatibilities specified. If no value is specified, the parameter is omitted from the response.</p>
pub fn requires_compatibilities(mut self, input: crate::types::Compatibility) -> Self {
self.inner = self.inner.requires_compatibilities(input);
self
}
/// <p>The task launch type that Amazon ECS validates the task definition against. A client exception is returned if the task definition doesn't validate against the compatibilities specified. If no value is specified, the parameter is omitted from the response.</p>
pub fn set_requires_compatibilities(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Compatibility>>) -> Self {
self.inner = self.inner.set_requires_compatibilities(input);
self
}
/// <p>The task launch type that Amazon ECS validates the task definition against. A client exception is returned if the task definition doesn't validate against the compatibilities specified. If no value is specified, the parameter is omitted from the response.</p>
pub fn get_requires_compatibilities(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Compatibility>> {
self.inner.get_requires_compatibilities()
}
/// <p>The number of CPU units used by the task. It can be expressed as an integer using CPU units (for example, <code>1024</code>) or as a string using vCPUs (for example, <code>1 vCPU</code> or <code>1 vcpu</code>) in a task definition. String values are converted to an integer indicating the CPU units when the task definition is registered.</p><note>
/// <p>Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.</p>
/// </note>
/// <p>If you're using the EC2 launch type, this field is optional. Supported values are between <code>128</code> CPU units (<code>0.125</code> vCPUs) and <code>10240</code> CPU units (<code>10</code> vCPUs). If you do not specify a value, the parameter is ignored.</p>
/// <p>If you're using the Fargate launch type, this field is required and you must use one of the following values, which determines your range of supported values for the <code>memory</code> parameter:</p>
/// <p>The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.</p>
/// <ul>
/// <li>
/// <p>256 (.25 vCPU) - Available <code>memory</code> values: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)</p></li>
/// <li>
/// <p>512 (.5 vCPU) - Available <code>memory</code> values: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)</p></li>
/// <li>
/// <p>1024 (1 vCPU) - Available <code>memory</code> values: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)</p></li>
/// <li>
/// <p>2048 (2 vCPU) - Available <code>memory</code> values: 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)</p></li>
/// <li>
/// <p>4096 (4 vCPU) - Available <code>memory</code> values: 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)</p></li>
/// <li>
/// <p>8192 (8 vCPU) - Available <code>memory</code> values: 16 GB and 60 GB in 4 GB increments</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// <li>
/// <p>16384 (16vCPU) - Available <code>memory</code> values: 32GB and 120 GB in 8 GB increments</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// </ul>
pub fn cpu(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.cpu(input.into());
self
}
/// <p>The number of CPU units used by the task. It can be expressed as an integer using CPU units (for example, <code>1024</code>) or as a string using vCPUs (for example, <code>1 vCPU</code> or <code>1 vcpu</code>) in a task definition. String values are converted to an integer indicating the CPU units when the task definition is registered.</p><note>
/// <p>Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.</p>
/// </note>
/// <p>If you're using the EC2 launch type, this field is optional. Supported values are between <code>128</code> CPU units (<code>0.125</code> vCPUs) and <code>10240</code> CPU units (<code>10</code> vCPUs). If you do not specify a value, the parameter is ignored.</p>
/// <p>If you're using the Fargate launch type, this field is required and you must use one of the following values, which determines your range of supported values for the <code>memory</code> parameter:</p>
/// <p>The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.</p>
/// <ul>
/// <li>
/// <p>256 (.25 vCPU) - Available <code>memory</code> values: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)</p></li>
/// <li>
/// <p>512 (.5 vCPU) - Available <code>memory</code> values: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)</p></li>
/// <li>
/// <p>1024 (1 vCPU) - Available <code>memory</code> values: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)</p></li>
/// <li>
/// <p>2048 (2 vCPU) - Available <code>memory</code> values: 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)</p></li>
/// <li>
/// <p>4096 (4 vCPU) - Available <code>memory</code> values: 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)</p></li>
/// <li>
/// <p>8192 (8 vCPU) - Available <code>memory</code> values: 16 GB and 60 GB in 4 GB increments</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// <li>
/// <p>16384 (16vCPU) - Available <code>memory</code> values: 32GB and 120 GB in 8 GB increments</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// </ul>
pub fn set_cpu(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_cpu(input);
self
}
/// <p>The number of CPU units used by the task. It can be expressed as an integer using CPU units (for example, <code>1024</code>) or as a string using vCPUs (for example, <code>1 vCPU</code> or <code>1 vcpu</code>) in a task definition. String values are converted to an integer indicating the CPU units when the task definition is registered.</p><note>
/// <p>Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.</p>
/// </note>
/// <p>If you're using the EC2 launch type, this field is optional. Supported values are between <code>128</code> CPU units (<code>0.125</code> vCPUs) and <code>10240</code> CPU units (<code>10</code> vCPUs). If you do not specify a value, the parameter is ignored.</p>
/// <p>If you're using the Fargate launch type, this field is required and you must use one of the following values, which determines your range of supported values for the <code>memory</code> parameter:</p>
/// <p>The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.</p>
/// <ul>
/// <li>
/// <p>256 (.25 vCPU) - Available <code>memory</code> values: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)</p></li>
/// <li>
/// <p>512 (.5 vCPU) - Available <code>memory</code> values: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)</p></li>
/// <li>
/// <p>1024 (1 vCPU) - Available <code>memory</code> values: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)</p></li>
/// <li>
/// <p>2048 (2 vCPU) - Available <code>memory</code> values: 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)</p></li>
/// <li>
/// <p>4096 (4 vCPU) - Available <code>memory</code> values: 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)</p></li>
/// <li>
/// <p>8192 (8 vCPU) - Available <code>memory</code> values: 16 GB and 60 GB in 4 GB increments</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// <li>
/// <p>16384 (16vCPU) - Available <code>memory</code> values: 32GB and 120 GB in 8 GB increments</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// </ul>
pub fn get_cpu(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_cpu()
}
/// <p>The amount of memory (in MiB) used by the task. It can be expressed as an integer using MiB (for example ,<code>1024</code>) or as a string using GB (for example, <code>1GB</code> or <code>1 GB</code>) in a task definition. String values are converted to an integer indicating the MiB when the task definition is registered.</p><note>
/// <p>Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.</p>
/// </note>
/// <p>If using the EC2 launch type, this field is optional.</p>
/// <p>If using the Fargate launch type, this field is required and you must use one of the following values. This determines your range of supported values for the <code>cpu</code> parameter.</p>
/// <p>The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.</p>
/// <ul>
/// <li>
/// <p>512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available <code>cpu</code> values: 256 (.25 vCPU)</p></li>
/// <li>
/// <p>1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available <code>cpu</code> values: 512 (.5 vCPU)</p></li>
/// <li>
/// <p>2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available <code>cpu</code> values: 1024 (1 vCPU)</p></li>
/// <li>
/// <p>Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available <code>cpu</code> values: 2048 (2 vCPU)</p></li>
/// <li>
/// <p>Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available <code>cpu</code> values: 4096 (4 vCPU)</p></li>
/// <li>
/// <p>Between 16 GB and 60 GB in 4 GB increments - Available <code>cpu</code> values: 8192 (8 vCPU)</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// <li>
/// <p>Between 32GB and 120 GB in 8 GB increments - Available <code>cpu</code> values: 16384 (16 vCPU)</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// </ul>
pub fn memory(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.memory(input.into());
self
}
/// <p>The amount of memory (in MiB) used by the task. It can be expressed as an integer using MiB (for example ,<code>1024</code>) or as a string using GB (for example, <code>1GB</code> or <code>1 GB</code>) in a task definition. String values are converted to an integer indicating the MiB when the task definition is registered.</p><note>
/// <p>Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.</p>
/// </note>
/// <p>If using the EC2 launch type, this field is optional.</p>
/// <p>If using the Fargate launch type, this field is required and you must use one of the following values. This determines your range of supported values for the <code>cpu</code> parameter.</p>
/// <p>The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.</p>
/// <ul>
/// <li>
/// <p>512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available <code>cpu</code> values: 256 (.25 vCPU)</p></li>
/// <li>
/// <p>1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available <code>cpu</code> values: 512 (.5 vCPU)</p></li>
/// <li>
/// <p>2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available <code>cpu</code> values: 1024 (1 vCPU)</p></li>
/// <li>
/// <p>Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available <code>cpu</code> values: 2048 (2 vCPU)</p></li>
/// <li>
/// <p>Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available <code>cpu</code> values: 4096 (4 vCPU)</p></li>
/// <li>
/// <p>Between 16 GB and 60 GB in 4 GB increments - Available <code>cpu</code> values: 8192 (8 vCPU)</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// <li>
/// <p>Between 32GB and 120 GB in 8 GB increments - Available <code>cpu</code> values: 16384 (16 vCPU)</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// </ul>
pub fn set_memory(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_memory(input);
self
}
/// <p>The amount of memory (in MiB) used by the task. It can be expressed as an integer using MiB (for example ,<code>1024</code>) or as a string using GB (for example, <code>1GB</code> or <code>1 GB</code>) in a task definition. String values are converted to an integer indicating the MiB when the task definition is registered.</p><note>
/// <p>Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.</p>
/// </note>
/// <p>If using the EC2 launch type, this field is optional.</p>
/// <p>If using the Fargate launch type, this field is required and you must use one of the following values. This determines your range of supported values for the <code>cpu</code> parameter.</p>
/// <p>The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.</p>
/// <ul>
/// <li>
/// <p>512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available <code>cpu</code> values: 256 (.25 vCPU)</p></li>
/// <li>
/// <p>1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available <code>cpu</code> values: 512 (.5 vCPU)</p></li>
/// <li>
/// <p>2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available <code>cpu</code> values: 1024 (1 vCPU)</p></li>
/// <li>
/// <p>Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available <code>cpu</code> values: 2048 (2 vCPU)</p></li>
/// <li>
/// <p>Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available <code>cpu</code> values: 4096 (4 vCPU)</p></li>
/// <li>
/// <p>Between 16 GB and 60 GB in 4 GB increments - Available <code>cpu</code> values: 8192 (8 vCPU)</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// <li>
/// <p>Between 32GB and 120 GB in 8 GB increments - Available <code>cpu</code> values: 16384 (16 vCPU)</p>
/// <p>This option requires Linux platform <code>1.4.0</code> or later.</p></li>
/// </ul>
pub fn get_memory(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_memory()
}
///
/// Appends an item to `tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>The metadata that you apply to the task definition to help you categorize and organize them. Each tag consists of a key and an optional value. You define both of them.</p>
/// <p>The following basic restrictions apply to tags:</p>
/// <ul>
/// <li>
/// <p>Maximum number of tags per resource - 50</p></li>
/// <li>
/// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
/// <li>
/// <p>Maximum key length - 128 Unicode characters in UTF-8</p></li>
/// <li>
/// <p>Maximum value length - 256 Unicode characters in UTF-8</p></li>
/// <li>
/// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
/// <li>
/// <p>Tag keys and values are case-sensitive.</p></li>
/// <li>
/// <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.</p></li>
/// </ul>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
self.inner = self.inner.tags(input);
self
}
/// <p>The metadata that you apply to the task definition to help you categorize and organize them. Each tag consists of a key and an optional value. You define both of them.</p>
/// <p>The following basic restrictions apply to tags:</p>
/// <ul>
/// <li>
/// <p>Maximum number of tags per resource - 50</p></li>
/// <li>
/// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
/// <li>
/// <p>Maximum key length - 128 Unicode characters in UTF-8</p></li>
/// <li>
/// <p>Maximum value length - 256 Unicode characters in UTF-8</p></li>
/// <li>
/// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
/// <li>
/// <p>Tag keys and values are case-sensitive.</p></li>
/// <li>
/// <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.</p></li>
/// </ul>
pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
self.inner = self.inner.set_tags(input);
self
}
/// <p>The metadata that you apply to the task definition to help you categorize and organize them. Each tag consists of a key and an optional value. You define both of them.</p>
/// <p>The following basic restrictions apply to tags:</p>
/// <ul>
/// <li>
/// <p>Maximum number of tags per resource - 50</p></li>
/// <li>
/// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
/// <li>
/// <p>Maximum key length - 128 Unicode characters in UTF-8</p></li>
/// <li>
/// <p>Maximum value length - 256 Unicode characters in UTF-8</p></li>
/// <li>
/// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
/// <li>
/// <p>Tag keys and values are case-sensitive.</p></li>
/// <li>
/// <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.</p></li>
/// </ul>
pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
self.inner.get_tags()
}
/// <p>The process namespace to use for the containers in the task. The valid values are <code>host</code> or <code>task</code>. On Fargate for Linux containers, the only valid value is <code>task</code>. For example, monitoring sidecars might need <code>pidMode</code> to access information about other containers running in the same task.</p>
/// <p>If <code>host</code> is specified, all containers within the tasks that specified the <code>host</code> PID mode on the same container instance share the same process namespace with the host Amazon EC2 instance.</p>
/// <p>If <code>task</code> is specified, all containers within the specified task share the same process namespace.</p>
/// <p>If no value is specified, the default is a private namespace for each container.</p>
/// <p>If the <code>host</code> PID mode is used, there's a heightened risk of undesired process namespace exposure.</p><note>
/// <p>This parameter is not supported for Windows containers.</p>
/// </note> <note>
/// <p>This parameter is only supported for tasks that are hosted on Fargate if the tasks are using platform version <code>1.4.0</code> or later (Linux). This isn't supported for Windows containers on Fargate.</p>
/// </note>
pub fn pid_mode(mut self, input: crate::types::PidMode) -> Self {
self.inner = self.inner.pid_mode(input);
self
}
/// <p>The process namespace to use for the containers in the task. The valid values are <code>host</code> or <code>task</code>. On Fargate for Linux containers, the only valid value is <code>task</code>. For example, monitoring sidecars might need <code>pidMode</code> to access information about other containers running in the same task.</p>
/// <p>If <code>host</code> is specified, all containers within the tasks that specified the <code>host</code> PID mode on the same container instance share the same process namespace with the host Amazon EC2 instance.</p>
/// <p>If <code>task</code> is specified, all containers within the specified task share the same process namespace.</p>
/// <p>If no value is specified, the default is a private namespace for each container.</p>
/// <p>If the <code>host</code> PID mode is used, there's a heightened risk of undesired process namespace exposure.</p><note>
/// <p>This parameter is not supported for Windows containers.</p>
/// </note> <note>
/// <p>This parameter is only supported for tasks that are hosted on Fargate if the tasks are using platform version <code>1.4.0</code> or later (Linux). This isn't supported for Windows containers on Fargate.</p>
/// </note>
pub fn set_pid_mode(mut self, input: ::std::option::Option<crate::types::PidMode>) -> Self {
self.inner = self.inner.set_pid_mode(input);
self
}
/// <p>The process namespace to use for the containers in the task. The valid values are <code>host</code> or <code>task</code>. On Fargate for Linux containers, the only valid value is <code>task</code>. For example, monitoring sidecars might need <code>pidMode</code> to access information about other containers running in the same task.</p>
/// <p>If <code>host</code> is specified, all containers within the tasks that specified the <code>host</code> PID mode on the same container instance share the same process namespace with the host Amazon EC2 instance.</p>
/// <p>If <code>task</code> is specified, all containers within the specified task share the same process namespace.</p>
/// <p>If no value is specified, the default is a private namespace for each container.</p>
/// <p>If the <code>host</code> PID mode is used, there's a heightened risk of undesired process namespace exposure.</p><note>
/// <p>This parameter is not supported for Windows containers.</p>
/// </note> <note>
/// <p>This parameter is only supported for tasks that are hosted on Fargate if the tasks are using platform version <code>1.4.0</code> or later (Linux). This isn't supported for Windows containers on Fargate.</p>
/// </note>
pub fn get_pid_mode(&self) -> &::std::option::Option<crate::types::PidMode> {
self.inner.get_pid_mode()
}
/// <p>The IPC resource namespace to use for the containers in the task. The valid values are <code>host</code>, <code>task</code>, or <code>none</code>. If <code>host</code> is specified, then all containers within the tasks that specified the <code>host</code> IPC mode on the same container instance share the same IPC resources with the host Amazon EC2 instance. If <code>task</code> is specified, all containers within the specified task share the same IPC resources. If <code>none</code> is specified, then IPC resources within the containers of a task are private and not shared with other containers in a task or on the container instance. If no value is specified, then the IPC resource namespace sharing depends on the Docker daemon setting on the container instance.</p>
/// <p>If the <code>host</code> IPC mode is used, be aware that there is a heightened risk of undesired IPC namespace expose.</p>
/// <p>If you are setting namespaced kernel parameters using <code>systemControls</code> for the containers in the task, the following will apply to your IPC resource namespace. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html">System Controls</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
/// <ul>
/// <li>
/// <p>For tasks that use the <code>host</code> IPC mode, IPC namespace related <code>systemControls</code> are not supported.</p></li>
/// <li>
/// <p>For tasks that use the <code>task</code> IPC mode, IPC namespace related <code>systemControls</code> will apply to all containers within a task.</p></li>
/// </ul><note>
/// <p>This parameter is not supported for Windows containers or tasks run on Fargate.</p>
/// </note>
pub fn ipc_mode(mut self, input: crate::types::IpcMode) -> Self {
self.inner = self.inner.ipc_mode(input);
self
}
/// <p>The IPC resource namespace to use for the containers in the task. The valid values are <code>host</code>, <code>task</code>, or <code>none</code>. If <code>host</code> is specified, then all containers within the tasks that specified the <code>host</code> IPC mode on the same container instance share the same IPC resources with the host Amazon EC2 instance. If <code>task</code> is specified, all containers within the specified task share the same IPC resources. If <code>none</code> is specified, then IPC resources within the containers of a task are private and not shared with other containers in a task or on the container instance. If no value is specified, then the IPC resource namespace sharing depends on the Docker daemon setting on the container instance.</p>
/// <p>If the <code>host</code> IPC mode is used, be aware that there is a heightened risk of undesired IPC namespace expose.</p>
/// <p>If you are setting namespaced kernel parameters using <code>systemControls</code> for the containers in the task, the following will apply to your IPC resource namespace. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html">System Controls</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
/// <ul>
/// <li>
/// <p>For tasks that use the <code>host</code> IPC mode, IPC namespace related <code>systemControls</code> are not supported.</p></li>
/// <li>
/// <p>For tasks that use the <code>task</code> IPC mode, IPC namespace related <code>systemControls</code> will apply to all containers within a task.</p></li>
/// </ul><note>
/// <p>This parameter is not supported for Windows containers or tasks run on Fargate.</p>
/// </note>
pub fn set_ipc_mode(mut self, input: ::std::option::Option<crate::types::IpcMode>) -> Self {
self.inner = self.inner.set_ipc_mode(input);
self
}
/// <p>The IPC resource namespace to use for the containers in the task. The valid values are <code>host</code>, <code>task</code>, or <code>none</code>. If <code>host</code> is specified, then all containers within the tasks that specified the <code>host</code> IPC mode on the same container instance share the same IPC resources with the host Amazon EC2 instance. If <code>task</code> is specified, all containers within the specified task share the same IPC resources. If <code>none</code> is specified, then IPC resources within the containers of a task are private and not shared with other containers in a task or on the container instance. If no value is specified, then the IPC resource namespace sharing depends on the Docker daemon setting on the container instance.</p>
/// <p>If the <code>host</code> IPC mode is used, be aware that there is a heightened risk of undesired IPC namespace expose.</p>
/// <p>If you are setting namespaced kernel parameters using <code>systemControls</code> for the containers in the task, the following will apply to your IPC resource namespace. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html">System Controls</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
/// <ul>
/// <li>
/// <p>For tasks that use the <code>host</code> IPC mode, IPC namespace related <code>systemControls</code> are not supported.</p></li>
/// <li>
/// <p>For tasks that use the <code>task</code> IPC mode, IPC namespace related <code>systemControls</code> will apply to all containers within a task.</p></li>
/// </ul><note>
/// <p>This parameter is not supported for Windows containers or tasks run on Fargate.</p>
/// </note>
pub fn get_ipc_mode(&self) -> &::std::option::Option<crate::types::IpcMode> {
self.inner.get_ipc_mode()
}
/// <p>The configuration details for the App Mesh proxy.</p>
/// <p>For tasks hosted on Amazon EC2 instances, the container instances require at least version <code>1.26.0</code> of the container agent and at least version <code>1.26.0-1</code> of the <code>ecs-init</code> package to use a proxy configuration. If your container instances are launched from the Amazon ECS-optimized AMI version <code>20190301</code> or later, then they contain the required versions of the container agent and <code>ecs-init</code>. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-ami-versions.html">Amazon ECS-optimized AMI versions</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
pub fn proxy_configuration(mut self, input: crate::types::ProxyConfiguration) -> Self {
self.inner = self.inner.proxy_configuration(input);
self
}
/// <p>The configuration details for the App Mesh proxy.</p>
/// <p>For tasks hosted on Amazon EC2 instances, the container instances require at least version <code>1.26.0</code> of the container agent and at least version <code>1.26.0-1</code> of the <code>ecs-init</code> package to use a proxy configuration. If your container instances are launched from the Amazon ECS-optimized AMI version <code>20190301</code> or later, then they contain the required versions of the container agent and <code>ecs-init</code>. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-ami-versions.html">Amazon ECS-optimized AMI versions</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
pub fn set_proxy_configuration(mut self, input: ::std::option::Option<crate::types::ProxyConfiguration>) -> Self {
self.inner = self.inner.set_proxy_configuration(input);
self
}
/// <p>The configuration details for the App Mesh proxy.</p>
/// <p>For tasks hosted on Amazon EC2 instances, the container instances require at least version <code>1.26.0</code> of the container agent and at least version <code>1.26.0-1</code> of the <code>ecs-init</code> package to use a proxy configuration. If your container instances are launched from the Amazon ECS-optimized AMI version <code>20190301</code> or later, then they contain the required versions of the container agent and <code>ecs-init</code>. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-ami-versions.html">Amazon ECS-optimized AMI versions</a> in the <i>Amazon Elastic Container Service Developer Guide</i>.</p>
pub fn get_proxy_configuration(&self) -> &::std::option::Option<crate::types::ProxyConfiguration> {
self.inner.get_proxy_configuration()
}
///
/// Appends an item to `inferenceAccelerators`.
///
/// To override the contents of this collection use [`set_inference_accelerators`](Self::set_inference_accelerators).
///
/// <p>The Elastic Inference accelerators to use for the containers in the task.</p>
pub fn inference_accelerators(mut self, input: crate::types::InferenceAccelerator) -> Self {
self.inner = self.inner.inference_accelerators(input);
self
}
/// <p>The Elastic Inference accelerators to use for the containers in the task.</p>
pub fn set_inference_accelerators(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::InferenceAccelerator>>) -> Self {
self.inner = self.inner.set_inference_accelerators(input);
self
}
/// <p>The Elastic Inference accelerators to use for the containers in the task.</p>
pub fn get_inference_accelerators(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::InferenceAccelerator>> {
self.inner.get_inference_accelerators()
}
/// <p>The amount of ephemeral storage to allocate for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on Fargate. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_data_volumes.html">Using data volumes in tasks</a> in the <i>Amazon ECS Developer Guide</i>.</p><note>
/// <p>For tasks using the Fargate launch type, the task requires the following platforms:</p>
/// <ul>
/// <li>
/// <p>Linux platform version <code>1.4.0</code> or later.</p></li>
/// <li>
/// <p>Windows platform version <code>1.0.0</code> or later.</p></li>
/// </ul>
/// </note>
pub fn ephemeral_storage(mut self, input: crate::types::EphemeralStorage) -> Self {
self.inner = self.inner.ephemeral_storage(input);
self
}
/// <p>The amount of ephemeral storage to allocate for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on Fargate. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_data_volumes.html">Using data volumes in tasks</a> in the <i>Amazon ECS Developer Guide</i>.</p><note>
/// <p>For tasks using the Fargate launch type, the task requires the following platforms:</p>
/// <ul>
/// <li>
/// <p>Linux platform version <code>1.4.0</code> or later.</p></li>
/// <li>
/// <p>Windows platform version <code>1.0.0</code> or later.</p></li>
/// </ul>
/// </note>
pub fn set_ephemeral_storage(mut self, input: ::std::option::Option<crate::types::EphemeralStorage>) -> Self {
self.inner = self.inner.set_ephemeral_storage(input);
self
}
/// <p>The amount of ephemeral storage to allocate for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on Fargate. For more information, see <a href="https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_data_volumes.html">Using data volumes in tasks</a> in the <i>Amazon ECS Developer Guide</i>.</p><note>
/// <p>For tasks using the Fargate launch type, the task requires the following platforms:</p>
/// <ul>
/// <li>
/// <p>Linux platform version <code>1.4.0</code> or later.</p></li>
/// <li>
/// <p>Windows platform version <code>1.0.0</code> or later.</p></li>
/// </ul>
/// </note>
pub fn get_ephemeral_storage(&self) -> &::std::option::Option<crate::types::EphemeralStorage> {
self.inner.get_ephemeral_storage()
}
/// <p>The operating system that your tasks definitions run on. A platform family is specified only for tasks using the Fargate launch type.</p>
pub fn runtime_platform(mut self, input: crate::types::RuntimePlatform) -> Self {
self.inner = self.inner.runtime_platform(input);
self
}
/// <p>The operating system that your tasks definitions run on. A platform family is specified only for tasks using the Fargate launch type.</p>
pub fn set_runtime_platform(mut self, input: ::std::option::Option<crate::types::RuntimePlatform>) -> Self {
self.inner = self.inner.set_runtime_platform(input);
self
}
/// <p>The operating system that your tasks definitions run on. A platform family is specified only for tasks using the Fargate launch type.</p>
pub fn get_runtime_platform(&self) -> &::std::option::Option<crate::types::RuntimePlatform> {
self.inner.get_runtime_platform()
}
}