1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#![allow(deprecated)]
#![allow(clippy::module_inception)]
#![allow(clippy::upper_case_acronyms)]
#![allow(clippy::large_enum_variant)]
#![allow(clippy::wrong_self_convention)]
#![allow(clippy::should_implement_trait)]
#![allow(clippy::disallowed_names)]
#![allow(clippy::vec_init_then_push)]
#![allow(clippy::type_complexity)]
#![allow(clippy::needless_return)]
#![allow(clippy::derive_partial_eq_without_eq)]
#![allow(clippy::result_large_err)]
#![allow(rustdoc::bare_urls)]
#![warn(missing_docs)]
//! **Please Note: The SDK is currently in Developer Preview and is intended strictly for
//! feedback purposes only. Do not use this SDK for production workloads.**
//!
//! Amazon Elastic Compute Cloud (Amazon EC2) provides secure and resizable computing capacity in the Amazon Web Services Cloud. Using Amazon EC2 eliminates the need to invest in hardware up front, so you can develop and deploy applications faster. Amazon Virtual Private Cloud (Amazon VPC) enables you to provision a logically isolated section of the Amazon Web Services Cloud where you can launch Amazon Web Services resources in a virtual network that you've defined. Amazon Elastic Block Store (Amazon EBS) provides block level storage volumes for use with EC2 instances. EBS volumes are highly available and reliable storage volumes that can be attached to any running instance and used like a hard drive.
//!
//! To learn more, see the following resources:
//! - Amazon EC2: [Amazon EC2 product page](http://aws.amazon.com/ec2), [Amazon EC2 documentation](https://docs.aws.amazon.com/ec2/index.html)
//! - Amazon EBS: [Amazon EBS product page](http://aws.amazon.com/ebs), [Amazon EBS documentation](https://docs.aws.amazon.com/ebs/index.html)
//! - Amazon VPC: [Amazon VPC product page](http://aws.amazon.com/vpc), [Amazon VPC documentation](https://docs.aws.amazon.com/vpc/index.html)
//! - VPN: [VPN product page](http://aws.amazon.com/vpn), [VPN documentation](https://docs.aws.amazon.com/vpn/index.html)
//!
//! ## Getting Started
//!
//! > Examples are available for many services and operations, check out the
//! > [examples folder in GitHub](https://github.com/awslabs/aws-sdk-rust/tree/main/examples).
//!
//! The SDK provides one crate per AWS service. You must add [Tokio](https://crates.io/crates/tokio)
//! as a dependency within your Rust project to execute asynchronous code. To add `aws-sdk-ec2` to
//! your project, add the following to your **Cargo.toml** file:
//!
//! ```toml
//! [dependencies]
//! aws-config = "0.57.1"
//! aws-sdk-ec2 = "0.35.0"
//! tokio = { version = "1", features = ["full"] }
//! ```
//!
//! Then in code, a client can be created with the following:
//!
//! ```rust,no_run
//! use aws_sdk_ec2 as ec2;
//!
//! #[::tokio::main]
//! async fn main() -> Result<(), ec2::Error> {
//! let config = aws_config::load_from_env().await;
//! let client = aws_sdk_ec2::Client::new(&config);
//!
//! // ... make some calls with the client
//!
//! Ok(())
//! }
//! ```
//!
//! See the [client documentation](https://docs.rs/aws-sdk-ec2/latest/aws_sdk_ec2/client/struct.Client.html)
//! for information on what calls can be made, and the inputs and outputs for each of those calls.
//!
//! ## Using the SDK
//!
//! Until the SDK is released, we will be adding information about using the SDK to the
//! [Developer Guide](https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html). Feel free to suggest
//! additional sections for the guide by opening an issue and describing what you are trying to do.
//!
//! ## Getting Help
//!
//! * [GitHub discussions](https://github.com/awslabs/aws-sdk-rust/discussions) - For ideas, RFCs & general questions
//! * [GitHub issues](https://github.com/awslabs/aws-sdk-rust/issues/new/choose) - For bug reports & feature requests
//! * [Generated Docs (latest version)](https://awslabs.github.io/aws-sdk-rust/)
//! * [Usage examples](https://github.com/awslabs/aws-sdk-rust/tree/main/examples)
//!
//!
//! # Crate Organization
//!
//! The entry point for most customers will be [`Client`], which exposes one method for each API
//! offered by Amazon Elastic Compute Cloud. The return value of each of these methods is a "fluent builder",
//! where the different inputs for that API are added by builder-style function call chaining,
//! followed by calling `send()` to get a [`Future`](std::future::Future) that will result in
//! either a successful output or a [`SdkError`](crate::error::SdkError).
//!
//! Some of these API inputs may be structs or enums to provide more complex structured information.
//! These structs and enums live in [`types`](crate::types). There are some simpler types for
//! representing data such as date times or binary blobs that live in [`primitives`](crate::primitives).
//!
//! All types required to configure a client via the [`Config`](crate::Config) struct live
//! in [`config`](crate::config).
//!
//! The [`operation`](crate::operation) module has a submodule for every API, and in each submodule
//! is the input, output, and error type for that API, as well as builders to construct each of those.
//!
//! There is a top-level [`Error`](crate::Error) type that encompasses all the errors that the
//! client can return. Any other error type can be converted to this `Error` type via the
//! [`From`](std::convert::From) trait.
//!
//! The other modules within this crate are not required for normal usage.
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use error_meta::Error;
#[doc(inline)]
pub use config::Config;
/// Client for calling Amazon Elastic Compute Cloud.
/// ## Constructing a `Client`
///
/// A [`Config`] is required to construct a client. For most use cases, the [`aws-config`]
/// crate should be used to automatically resolve this config using
/// [`aws_config::load_from_env()`], since this will resolve an [`SdkConfig`] which can be shared
/// across multiple different AWS SDK clients. This config resolution process can be customized
/// by calling [`aws_config::from_env()`] instead, which returns a [`ConfigLoader`] that uses
/// the [builder pattern] to customize the default config.
///
/// In the simplest case, creating a client looks as follows:
/// ```rust,no_run
/// # async fn wrapper() {
/// let config = aws_config::load_from_env().await;
/// let client = aws_sdk_ec2::Client::new(&config);
/// # }
/// ```
///
/// Occasionally, SDKs may have additional service-specific that can be set on the [`Config`] that
/// is absent from [`SdkConfig`], or slightly different settings for a specific client may be desired.
/// The [`Config`] struct implements `From<&SdkConfig>`, so setting these specific settings can be
/// done as follows:
///
/// ```rust,no_run
/// # async fn wrapper() {
/// let sdk_config = ::aws_config::load_from_env().await;
/// let config = aws_sdk_ec2::config::Builder::from(&sdk_config)
/// # /*
/// .some_service_specific_setting("value")
/// # */
/// .build();
/// # }
/// ```
///
/// See the [`aws-config` docs] and [`Config`] for more information on customizing configuration.
///
/// _Note:_ Client construction is expensive due to connection thread pool initialization, and should
/// be done once at application start-up.
///
/// [`Config`]: crate::Config
/// [`ConfigLoader`]: https://docs.rs/aws-config/*/aws_config/struct.ConfigLoader.html
/// [`SdkConfig`]: https://docs.rs/aws-config/*/aws_config/struct.SdkConfig.html
/// [`aws-config` docs]: https://docs.rs/aws-config/*
/// [`aws-config`]: https://crates.io/crates/aws-config
/// [`aws_config::from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.from_env.html
/// [`aws_config::load_from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.load_from_env.html
/// [builder pattern]: https://rust-lang.github.io/api-guidelines/type-safety.html#builders-enable-construction-of-complex-values-c-builder
/// # Using the `Client`
///
/// A client has a function for every operation that can be performed by the service.
/// For example, the [`AcceptAddressTransfer`](crate::operation::accept_address_transfer) operation has
/// a [`Client::accept_address_transfer`], function which returns a builder for that operation.
/// The fluent builder ultimately has a `send()` function that returns an async future that
/// returns a result, as illustrated below:
///
/// ```rust,ignore
/// let result = client.accept_address_transfer()
/// .address("example")
/// .send()
/// .await;
/// ```
///
/// The underlying HTTP requests that get made by this can be modified with the `customize_operation`
/// function on the fluent builder. See the [`customize`](crate::client::customize) module for more
/// information.
pub mod client;
/// Configuration for Amazon Elastic Compute Cloud.
pub mod config;
/// Common errors and error handling utilities.
pub mod error;
mod error_meta;
/// Information about this crate.
pub mod meta;
/// All operations that this crate can perform.
pub mod operation;
/// Primitives such as `Blob` or `DateTime` used by other types.
pub mod primitives;
/// Data structures used by operation inputs/outputs.
pub mod types;
mod auth_plugin;
pub(crate) mod client_idempotency_token;
mod idempotency_token;
pub(crate) mod protocol_serde;
mod serialization_settings;
mod lens;
mod ec2_query_errors;
mod endpoint_lib;
mod serde_util;
#[doc(inline)]
pub use client::Client;