aws_sdk_ebs/
lib.rs

1#![allow(deprecated)]
2#![allow(unknown_lints)]
3#![allow(clippy::module_inception)]
4#![allow(clippy::upper_case_acronyms)]
5#![allow(clippy::large_enum_variant)]
6#![allow(clippy::wrong_self_convention)]
7#![allow(clippy::should_implement_trait)]
8#![allow(clippy::disallowed_names)]
9#![allow(clippy::vec_init_then_push)]
10#![allow(clippy::type_complexity)]
11#![allow(clippy::needless_return)]
12#![allow(clippy::derive_partial_eq_without_eq)]
13#![allow(clippy::result_large_err)]
14#![allow(clippy::unnecessary_map_on_constructor)]
15#![allow(rustdoc::bare_urls)]
16#![allow(rustdoc::redundant_explicit_links)]
17#![allow(rustdoc::invalid_html_tags)]
18#![forbid(unsafe_code)]
19#![warn(missing_docs)]
20#![cfg_attr(docsrs, feature(doc_auto_cfg))]
21//! You can use the Amazon Elastic Block Store (Amazon EBS) direct APIs to create Amazon EBS snapshots, write data directly to your snapshots, read data on your snapshots, and identify the differences or changes between two snapshots. If you’re an independent software vendor (ISV) who offers backup services for Amazon EBS, the EBS direct APIs make it more efficient and cost-effective to track incremental changes on your Amazon EBS volumes through snapshots. This can be done without having to create new volumes from snapshots, and then use Amazon Elastic Compute Cloud (Amazon EC2) instances to compare the differences.
22//!
23//! You can create incremental snapshots directly from data on-premises into volumes and the cloud to use for quick disaster recovery. With the ability to write and read snapshots, you can write your on-premises data to an snapshot during a disaster. Then after recovery, you can restore it back to Amazon Web Services or on-premises from the snapshot. You no longer need to build and maintain complex mechanisms to copy data to and from Amazon EBS.
24//!
25//! This API reference provides detailed information about the actions, data types, parameters, and errors of the EBS direct APIs. For more information about the elements that make up the EBS direct APIs, and examples of how to use them effectively, see [Accessing the Contents of an Amazon EBS Snapshot](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-accessing-snapshot.html) in the _Amazon Elastic Compute Cloud User Guide_. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas for the EBS direct APIs, see [Amazon Elastic Block Store Endpoints and Quotas](https://docs.aws.amazon.com/general/latest/gr/ebs-service.html) in the _Amazon Web Services General Reference_.
26//!
27//! ## Getting Started
28//!
29//! > Examples are available for many services and operations, check out the
30//! > [examples folder in GitHub](https://github.com/awslabs/aws-sdk-rust/tree/main/examples).
31//!
32//! The SDK provides one crate per AWS service. You must add [Tokio](https://crates.io/crates/tokio)
33//! as a dependency within your Rust project to execute asynchronous code. To add `aws-sdk-ebs` to
34//! your project, add the following to your **Cargo.toml** file:
35//!
36//! ```toml
37//! [dependencies]
38//! aws-config = { version = "1.1.7", features = ["behavior-version-latest"] }
39//! aws-sdk-ebs = "1.84.0"
40//! tokio = { version = "1", features = ["full"] }
41//! ```
42//!
43//! Then in code, a client can be created with the following:
44//!
45//! ```rust,no_run
46//! use aws_sdk_ebs as ebs;
47//!
48//! #[::tokio::main]
49//! async fn main() -> Result<(), ebs::Error> {
50//!     let config = aws_config::load_from_env().await;
51//!     let client = aws_sdk_ebs::Client::new(&config);
52//!
53//!     // ... make some calls with the client
54//!
55//!     Ok(())
56//! }
57//! ```
58//!
59//! See the [client documentation](https://docs.rs/aws-sdk-ebs/latest/aws_sdk_ebs/client/struct.Client.html)
60//! for information on what calls can be made, and the inputs and outputs for each of those calls.
61//!
62//! ## Using the SDK
63//!
64//! Until the SDK is released, we will be adding information about using the SDK to the
65//! [Developer Guide](https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html). Feel free to suggest
66//! additional sections for the guide by opening an issue and describing what you are trying to do.
67//!
68//! ## Getting Help
69//!
70//! * [GitHub discussions](https://github.com/awslabs/aws-sdk-rust/discussions) - For ideas, RFCs & general questions
71//! * [GitHub issues](https://github.com/awslabs/aws-sdk-rust/issues/new/choose) - For bug reports & feature requests
72//! * [Generated Docs (latest version)](https://awslabs.github.io/aws-sdk-rust/)
73//! * [Usage examples](https://github.com/awslabs/aws-sdk-rust/tree/main/examples)
74//!
75//!
76//! # Crate Organization
77//!
78//! The entry point for most customers will be [`Client`], which exposes one method for each API
79//! offered by Amazon Elastic Block Store. The return value of each of these methods is a "fluent builder",
80//! where the different inputs for that API are added by builder-style function call chaining,
81//! followed by calling `send()` to get a [`Future`](std::future::Future) that will result in
82//! either a successful output or a [`SdkError`](crate::error::SdkError).
83//!
84//! Some of these API inputs may be structs or enums to provide more complex structured information.
85//! These structs and enums live in [`types`](crate::types). There are some simpler types for
86//! representing data such as date times or binary blobs that live in [`primitives`](crate::primitives).
87//!
88//! All types required to configure a client via the [`Config`](crate::Config) struct live
89//! in [`config`](crate::config).
90//!
91//! The [`operation`](crate::operation) module has a submodule for every API, and in each submodule
92//! is the input, output, and error type for that API, as well as builders to construct each of those.
93//!
94//! There is a top-level [`Error`](crate::Error) type that encompasses all the errors that the
95//! client can return. Any other error type can be converted to this `Error` type via the
96//! [`From`](std::convert::From) trait.
97//!
98//! The other modules within this crate are not required for normal usage.
99
100// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
101pub use error_meta::Error;
102
103#[doc(inline)]
104pub use config::Config;
105
106/// Client for calling Amazon Elastic Block Store.
107/// ## Constructing a `Client`
108///
109/// A [`Config`] is required to construct a client. For most use cases, the [`aws-config`]
110/// crate should be used to automatically resolve this config using
111/// [`aws_config::load_from_env()`], since this will resolve an [`SdkConfig`] which can be shared
112/// across multiple different AWS SDK clients. This config resolution process can be customized
113/// by calling [`aws_config::from_env()`] instead, which returns a [`ConfigLoader`] that uses
114/// the [builder pattern] to customize the default config.
115///
116/// In the simplest case, creating a client looks as follows:
117/// ```rust,no_run
118/// # async fn wrapper() {
119/// let config = aws_config::load_from_env().await;
120/// let client = aws_sdk_ebs::Client::new(&config);
121/// # }
122/// ```
123///
124/// Occasionally, SDKs may have additional service-specific values that can be set on the [`Config`] that
125/// is absent from [`SdkConfig`], or slightly different settings for a specific client may be desired.
126/// The [`Builder`](crate::config::Builder) struct implements `From<&SdkConfig>`, so setting these specific settings can be
127/// done as follows:
128///
129/// ```rust,no_run
130/// # async fn wrapper() {
131/// let sdk_config = ::aws_config::load_from_env().await;
132/// let config = aws_sdk_ebs::config::Builder::from(&sdk_config)
133/// # /*
134///     .some_service_specific_setting("value")
135/// # */
136///     .build();
137/// # }
138/// ```
139///
140/// See the [`aws-config` docs] and [`Config`] for more information on customizing configuration.
141///
142/// _Note:_ Client construction is expensive due to connection thread pool initialization, and should
143/// be done once at application start-up.
144///
145/// [`Config`]: crate::Config
146/// [`ConfigLoader`]: https://docs.rs/aws-config/*/aws_config/struct.ConfigLoader.html
147/// [`SdkConfig`]: https://docs.rs/aws-config/*/aws_config/struct.SdkConfig.html
148/// [`aws-config` docs]: https://docs.rs/aws-config/*
149/// [`aws-config`]: https://crates.io/crates/aws-config
150/// [`aws_config::from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.from_env.html
151/// [`aws_config::load_from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.load_from_env.html
152/// [builder pattern]: https://rust-lang.github.io/api-guidelines/type-safety.html#builders-enable-construction-of-complex-values-c-builder
153/// # Using the `Client`
154///
155/// A client has a function for every operation that can be performed by the service.
156/// For example, the [`CompleteSnapshot`](crate::operation::complete_snapshot) operation has
157/// a [`Client::complete_snapshot`], function which returns a builder for that operation.
158/// The fluent builder ultimately has a `send()` function that returns an async future that
159/// returns a result, as illustrated below:
160///
161/// ```rust,ignore
162/// let result = client.complete_snapshot()
163///     .snapshot_id("example")
164///     .send()
165///     .await;
166/// ```
167///
168/// The underlying HTTP requests that get made by this can be modified with the `customize_operation`
169/// function on the fluent builder. See the [`customize`](crate::client::customize) module for more
170/// information.
171pub mod client;
172
173/// Configuration for Amazon Elastic Block Store.
174pub mod config;
175
176/// Common errors and error handling utilities.
177pub mod error;
178
179mod error_meta;
180
181/// Information about this crate.
182pub mod meta;
183
184/// All operations that this crate can perform.
185pub mod operation;
186
187/// Primitives such as `Blob` or `DateTime` used by other types.
188pub mod primitives;
189
190/// Data structures used by operation inputs/outputs.
191pub mod types;
192
193pub(crate) mod client_idempotency_token;
194
195mod idempotency_token;
196
197pub(crate) mod protocol_serde;
198
199mod sdk_feature_tracker;
200
201mod serialization_settings;
202
203mod endpoint_lib;
204
205mod lens;
206
207mod serde_util;
208
209mod json_errors;
210
211#[doc(inline)]
212pub use client::Client;