aws_sdk_datapipeline/lib.rs
1#![allow(deprecated)]
2#![allow(unknown_lints)]
3#![allow(clippy::module_inception)]
4#![allow(clippy::upper_case_acronyms)]
5#![allow(clippy::large_enum_variant)]
6#![allow(clippy::wrong_self_convention)]
7#![allow(clippy::should_implement_trait)]
8#![allow(clippy::disallowed_names)]
9#![allow(clippy::vec_init_then_push)]
10#![allow(clippy::type_complexity)]
11#![allow(clippy::needless_return)]
12#![allow(clippy::derive_partial_eq_without_eq)]
13#![allow(clippy::result_large_err)]
14#![allow(clippy::unnecessary_map_on_constructor)]
15#![allow(rustdoc::bare_urls)]
16#![allow(rustdoc::redundant_explicit_links)]
17#![forbid(unsafe_code)]
18#![warn(missing_docs)]
19#![cfg_attr(docsrs, feature(doc_auto_cfg))]
20//! AWS Data Pipeline configures and manages a data-driven workflow called a pipeline. AWS Data Pipeline handles the details of scheduling and ensuring that data dependencies are met so that your application can focus on processing the data.
21//!
22//! AWS Data Pipeline provides a JAR implementation of a task runner called AWS Data Pipeline Task Runner. AWS Data Pipeline Task Runner provides logic for common data management scenarios, such as performing database queries and running data analysis using Amazon Elastic MapReduce (Amazon EMR). You can use AWS Data Pipeline Task Runner as your task runner, or you can write your own task runner to provide custom data management.
23//!
24//! AWS Data Pipeline implements two main sets of functionality. Use the first set to create a pipeline and define data sources, schedules, dependencies, and the transforms to be performed on the data. Use the second set in your task runner application to receive the next task ready for processing. The logic for performing the task, such as querying the data, running data analysis, or converting the data from one format to another, is contained within the task runner. The task runner performs the task assigned to it by the web service, reporting progress to the web service as it does so. When the task is done, the task runner reports the final success or failure of the task to the web service.
25//!
26//! ## Getting Started
27//!
28//! > Examples are available for many services and operations, check out the
29//! > [examples folder in GitHub](https://github.com/awslabs/aws-sdk-rust/tree/main/examples).
30//!
31//! The SDK provides one crate per AWS service. You must add [Tokio](https://crates.io/crates/tokio)
32//! as a dependency within your Rust project to execute asynchronous code. To add `aws-sdk-datapipeline` to
33//! your project, add the following to your **Cargo.toml** file:
34//!
35//! ```toml
36//! [dependencies]
37//! aws-config = { version = "1.1.7", features = ["behavior-version-latest"] }
38//! aws-sdk-datapipeline = "1.64.0"
39//! tokio = { version = "1", features = ["full"] }
40//! ```
41//!
42//! Then in code, a client can be created with the following:
43//!
44//! ```rust,no_run
45//! use aws_sdk_datapipeline as datapipeline;
46//!
47//! #[::tokio::main]
48//! async fn main() -> Result<(), datapipeline::Error> {
49//! let config = aws_config::load_from_env().await;
50//! let client = aws_sdk_datapipeline::Client::new(&config);
51//!
52//! // ... make some calls with the client
53//!
54//! Ok(())
55//! }
56//! ```
57//!
58//! See the [client documentation](https://docs.rs/aws-sdk-datapipeline/latest/aws_sdk_datapipeline/client/struct.Client.html)
59//! for information on what calls can be made, and the inputs and outputs for each of those calls.
60//!
61//! ## Using the SDK
62//!
63//! Until the SDK is released, we will be adding information about using the SDK to the
64//! [Developer Guide](https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html). Feel free to suggest
65//! additional sections for the guide by opening an issue and describing what you are trying to do.
66//!
67//! ## Getting Help
68//!
69//! * [GitHub discussions](https://github.com/awslabs/aws-sdk-rust/discussions) - For ideas, RFCs & general questions
70//! * [GitHub issues](https://github.com/awslabs/aws-sdk-rust/issues/new/choose) - For bug reports & feature requests
71//! * [Generated Docs (latest version)](https://awslabs.github.io/aws-sdk-rust/)
72//! * [Usage examples](https://github.com/awslabs/aws-sdk-rust/tree/main/examples)
73//!
74//!
75//! # Crate Organization
76//!
77//! The entry point for most customers will be [`Client`], which exposes one method for each API
78//! offered by AWS Data Pipeline. The return value of each of these methods is a "fluent builder",
79//! where the different inputs for that API are added by builder-style function call chaining,
80//! followed by calling `send()` to get a [`Future`](std::future::Future) that will result in
81//! either a successful output or a [`SdkError`](crate::error::SdkError).
82//!
83//! Some of these API inputs may be structs or enums to provide more complex structured information.
84//! These structs and enums live in [`types`](crate::types). There are some simpler types for
85//! representing data such as date times or binary blobs that live in [`primitives`](crate::primitives).
86//!
87//! All types required to configure a client via the [`Config`](crate::Config) struct live
88//! in [`config`](crate::config).
89//!
90//! The [`operation`](crate::operation) module has a submodule for every API, and in each submodule
91//! is the input, output, and error type for that API, as well as builders to construct each of those.
92//!
93//! There is a top-level [`Error`](crate::Error) type that encompasses all the errors that the
94//! client can return. Any other error type can be converted to this `Error` type via the
95//! [`From`](std::convert::From) trait.
96//!
97//! The other modules within this crate are not required for normal usage.
98
99// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
100pub use error_meta::Error;
101
102#[doc(inline)]
103pub use config::Config;
104
105/// Client for calling AWS Data Pipeline.
106/// ## Constructing a `Client`
107///
108/// A [`Config`] is required to construct a client. For most use cases, the [`aws-config`]
109/// crate should be used to automatically resolve this config using
110/// [`aws_config::load_from_env()`], since this will resolve an [`SdkConfig`] which can be shared
111/// across multiple different AWS SDK clients. This config resolution process can be customized
112/// by calling [`aws_config::from_env()`] instead, which returns a [`ConfigLoader`] that uses
113/// the [builder pattern] to customize the default config.
114///
115/// In the simplest case, creating a client looks as follows:
116/// ```rust,no_run
117/// # async fn wrapper() {
118/// let config = aws_config::load_from_env().await;
119/// let client = aws_sdk_datapipeline::Client::new(&config);
120/// # }
121/// ```
122///
123/// Occasionally, SDKs may have additional service-specific values that can be set on the [`Config`] that
124/// is absent from [`SdkConfig`], or slightly different settings for a specific client may be desired.
125/// The [`Builder`](crate::config::Builder) struct implements `From<&SdkConfig>`, so setting these specific settings can be
126/// done as follows:
127///
128/// ```rust,no_run
129/// # async fn wrapper() {
130/// let sdk_config = ::aws_config::load_from_env().await;
131/// let config = aws_sdk_datapipeline::config::Builder::from(&sdk_config)
132/// # /*
133/// .some_service_specific_setting("value")
134/// # */
135/// .build();
136/// # }
137/// ```
138///
139/// See the [`aws-config` docs] and [`Config`] for more information on customizing configuration.
140///
141/// _Note:_ Client construction is expensive due to connection thread pool initialization, and should
142/// be done once at application start-up.
143///
144/// [`Config`]: crate::Config
145/// [`ConfigLoader`]: https://docs.rs/aws-config/*/aws_config/struct.ConfigLoader.html
146/// [`SdkConfig`]: https://docs.rs/aws-config/*/aws_config/struct.SdkConfig.html
147/// [`aws-config` docs]: https://docs.rs/aws-config/*
148/// [`aws-config`]: https://crates.io/crates/aws-config
149/// [`aws_config::from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.from_env.html
150/// [`aws_config::load_from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.load_from_env.html
151/// [builder pattern]: https://rust-lang.github.io/api-guidelines/type-safety.html#builders-enable-construction-of-complex-values-c-builder
152/// # Using the `Client`
153///
154/// A client has a function for every operation that can be performed by the service.
155/// For example, the [`ActivatePipeline`](crate::operation::activate_pipeline) operation has
156/// a [`Client::activate_pipeline`], function which returns a builder for that operation.
157/// The fluent builder ultimately has a `send()` function that returns an async future that
158/// returns a result, as illustrated below:
159///
160/// ```rust,ignore
161/// let result = client.activate_pipeline()
162/// .pipeline_id("example")
163/// .send()
164/// .await;
165/// ```
166///
167/// The underlying HTTP requests that get made by this can be modified with the `customize_operation`
168/// function on the fluent builder. See the [`customize`](crate::client::customize) module for more
169/// information.
170pub mod client;
171
172/// Configuration for AWS Data Pipeline.
173pub mod config;
174
175/// Common errors and error handling utilities.
176pub mod error;
177
178mod error_meta;
179
180/// Information about this crate.
181pub mod meta;
182
183/// All operations that this crate can perform.
184pub mod operation;
185
186/// Primitives such as `Blob` or `DateTime` used by other types.
187pub mod primitives;
188
189/// Data structures used by operation inputs/outputs.
190pub mod types;
191
192mod auth_plugin;
193
194pub(crate) mod protocol_serde;
195
196mod sdk_feature_tracker;
197
198mod serialization_settings;
199
200mod endpoint_lib;
201
202mod lens;
203
204mod serde_util;
205
206mod json_errors;
207
208#[doc(inline)]
209pub use client::Client;