1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq)]
pub struct DetectEntitiesInput {
/// <p>A UTF-8 text string. The maximum string size is 100 KB. If you enter text using this parameter, do not use the <code>Bytes</code> parameter.</p>
pub text: ::std::option::Option<::std::string::String>,
/// <p>The language of the input documents. You can specify any of the primary languages supported by Amazon Comprehend. If your request includes the endpoint for a custom entity recognition model, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you specify here.</p>
/// <p>All input documents must be in the same language.</p>
pub language_code: ::std::option::Option<crate::types::LanguageCode>,
/// <p>The Amazon Resource Name of an endpoint that is associated with a custom entity recognition model. Provide an endpoint if you want to detect entities by using your own custom model instead of the default model that is used by Amazon Comprehend.</p>
/// <p>If you specify an endpoint, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you provide in your request.</p>
/// <p>For information about endpoints, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints.html">Managing endpoints</a>.</p>
pub endpoint_arn: ::std::option::Option<::std::string::String>,
/// <p>This field applies only when you use a custom entity recognition model that was trained with PDF annotations. For other cases, enter your text input in the <code>Text</code> field.</p>
/// <p>Use the <code>Bytes</code> parameter to input a text, PDF, Word or image file. Using a plain-text file in the <code>Bytes</code> parameter is equivelent to using the <code>Text</code> parameter (the <code>Entities</code> field in the response is identical).</p>
/// <p>You can also use the <code>Bytes</code> parameter to input an Amazon Textract <code>DetectDocumentText</code> or <code>AnalyzeDocument</code> output file.</p>
/// <p>Provide the input document as a sequence of base64-encoded bytes. If your code uses an Amazon Web Services SDK to detect entities, the SDK may encode the document file bytes for you.</p>
/// <p>The maximum length of this field depends on the input document type. For details, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/idp-inputs-sync.html"> Inputs for real-time custom analysis</a> in the Comprehend Developer Guide.</p>
/// <p>If you use the <code>Bytes</code> parameter, do not use the <code>Text</code> parameter.</p>
pub bytes: ::std::option::Option<::aws_smithy_types::Blob>,
/// <p>Provides configuration parameters to override the default actions for extracting text from PDF documents and image files.</p>
pub document_reader_config: ::std::option::Option<crate::types::DocumentReaderConfig>,
}
impl DetectEntitiesInput {
/// <p>A UTF-8 text string. The maximum string size is 100 KB. If you enter text using this parameter, do not use the <code>Bytes</code> parameter.</p>
pub fn text(&self) -> ::std::option::Option<&str> {
self.text.as_deref()
}
/// <p>The language of the input documents. You can specify any of the primary languages supported by Amazon Comprehend. If your request includes the endpoint for a custom entity recognition model, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you specify here.</p>
/// <p>All input documents must be in the same language.</p>
pub fn language_code(&self) -> ::std::option::Option<&crate::types::LanguageCode> {
self.language_code.as_ref()
}
/// <p>The Amazon Resource Name of an endpoint that is associated with a custom entity recognition model. Provide an endpoint if you want to detect entities by using your own custom model instead of the default model that is used by Amazon Comprehend.</p>
/// <p>If you specify an endpoint, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you provide in your request.</p>
/// <p>For information about endpoints, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints.html">Managing endpoints</a>.</p>
pub fn endpoint_arn(&self) -> ::std::option::Option<&str> {
self.endpoint_arn.as_deref()
}
/// <p>This field applies only when you use a custom entity recognition model that was trained with PDF annotations. For other cases, enter your text input in the <code>Text</code> field.</p>
/// <p>Use the <code>Bytes</code> parameter to input a text, PDF, Word or image file. Using a plain-text file in the <code>Bytes</code> parameter is equivelent to using the <code>Text</code> parameter (the <code>Entities</code> field in the response is identical).</p>
/// <p>You can also use the <code>Bytes</code> parameter to input an Amazon Textract <code>DetectDocumentText</code> or <code>AnalyzeDocument</code> output file.</p>
/// <p>Provide the input document as a sequence of base64-encoded bytes. If your code uses an Amazon Web Services SDK to detect entities, the SDK may encode the document file bytes for you.</p>
/// <p>The maximum length of this field depends on the input document type. For details, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/idp-inputs-sync.html"> Inputs for real-time custom analysis</a> in the Comprehend Developer Guide.</p>
/// <p>If you use the <code>Bytes</code> parameter, do not use the <code>Text</code> parameter.</p>
pub fn bytes(&self) -> ::std::option::Option<&::aws_smithy_types::Blob> {
self.bytes.as_ref()
}
/// <p>Provides configuration parameters to override the default actions for extracting text from PDF documents and image files.</p>
pub fn document_reader_config(&self) -> ::std::option::Option<&crate::types::DocumentReaderConfig> {
self.document_reader_config.as_ref()
}
}
impl ::std::fmt::Debug for DetectEntitiesInput {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
let mut formatter = f.debug_struct("DetectEntitiesInput");
formatter.field("text", &"*** Sensitive Data Redacted ***");
formatter.field("language_code", &self.language_code);
formatter.field("endpoint_arn", &self.endpoint_arn);
formatter.field("bytes", &self.bytes);
formatter.field("document_reader_config", &self.document_reader_config);
formatter.finish()
}
}
impl DetectEntitiesInput {
/// Creates a new builder-style object to manufacture [`DetectEntitiesInput`](crate::operation::detect_entities::DetectEntitiesInput).
pub fn builder() -> crate::operation::detect_entities::builders::DetectEntitiesInputBuilder {
crate::operation::detect_entities::builders::DetectEntitiesInputBuilder::default()
}
}
/// A builder for [`DetectEntitiesInput`](crate::operation::detect_entities::DetectEntitiesInput).
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default)]
pub struct DetectEntitiesInputBuilder {
pub(crate) text: ::std::option::Option<::std::string::String>,
pub(crate) language_code: ::std::option::Option<crate::types::LanguageCode>,
pub(crate) endpoint_arn: ::std::option::Option<::std::string::String>,
pub(crate) bytes: ::std::option::Option<::aws_smithy_types::Blob>,
pub(crate) document_reader_config: ::std::option::Option<crate::types::DocumentReaderConfig>,
}
impl DetectEntitiesInputBuilder {
/// <p>A UTF-8 text string. The maximum string size is 100 KB. If you enter text using this parameter, do not use the <code>Bytes</code> parameter.</p>
pub fn text(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.text = ::std::option::Option::Some(input.into());
self
}
/// <p>A UTF-8 text string. The maximum string size is 100 KB. If you enter text using this parameter, do not use the <code>Bytes</code> parameter.</p>
pub fn set_text(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.text = input;
self
}
/// <p>A UTF-8 text string. The maximum string size is 100 KB. If you enter text using this parameter, do not use the <code>Bytes</code> parameter.</p>
pub fn get_text(&self) -> &::std::option::Option<::std::string::String> {
&self.text
}
/// <p>The language of the input documents. You can specify any of the primary languages supported by Amazon Comprehend. If your request includes the endpoint for a custom entity recognition model, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you specify here.</p>
/// <p>All input documents must be in the same language.</p>
pub fn language_code(mut self, input: crate::types::LanguageCode) -> Self {
self.language_code = ::std::option::Option::Some(input);
self
}
/// <p>The language of the input documents. You can specify any of the primary languages supported by Amazon Comprehend. If your request includes the endpoint for a custom entity recognition model, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you specify here.</p>
/// <p>All input documents must be in the same language.</p>
pub fn set_language_code(mut self, input: ::std::option::Option<crate::types::LanguageCode>) -> Self {
self.language_code = input;
self
}
/// <p>The language of the input documents. You can specify any of the primary languages supported by Amazon Comprehend. If your request includes the endpoint for a custom entity recognition model, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you specify here.</p>
/// <p>All input documents must be in the same language.</p>
pub fn get_language_code(&self) -> &::std::option::Option<crate::types::LanguageCode> {
&self.language_code
}
/// <p>The Amazon Resource Name of an endpoint that is associated with a custom entity recognition model. Provide an endpoint if you want to detect entities by using your own custom model instead of the default model that is used by Amazon Comprehend.</p>
/// <p>If you specify an endpoint, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you provide in your request.</p>
/// <p>For information about endpoints, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints.html">Managing endpoints</a>.</p>
pub fn endpoint_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.endpoint_arn = ::std::option::Option::Some(input.into());
self
}
/// <p>The Amazon Resource Name of an endpoint that is associated with a custom entity recognition model. Provide an endpoint if you want to detect entities by using your own custom model instead of the default model that is used by Amazon Comprehend.</p>
/// <p>If you specify an endpoint, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you provide in your request.</p>
/// <p>For information about endpoints, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints.html">Managing endpoints</a>.</p>
pub fn set_endpoint_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.endpoint_arn = input;
self
}
/// <p>The Amazon Resource Name of an endpoint that is associated with a custom entity recognition model. Provide an endpoint if you want to detect entities by using your own custom model instead of the default model that is used by Amazon Comprehend.</p>
/// <p>If you specify an endpoint, Amazon Comprehend uses the language of your custom model, and it ignores any language code that you provide in your request.</p>
/// <p>For information about endpoints, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints.html">Managing endpoints</a>.</p>
pub fn get_endpoint_arn(&self) -> &::std::option::Option<::std::string::String> {
&self.endpoint_arn
}
/// <p>This field applies only when you use a custom entity recognition model that was trained with PDF annotations. For other cases, enter your text input in the <code>Text</code> field.</p>
/// <p>Use the <code>Bytes</code> parameter to input a text, PDF, Word or image file. Using a plain-text file in the <code>Bytes</code> parameter is equivelent to using the <code>Text</code> parameter (the <code>Entities</code> field in the response is identical).</p>
/// <p>You can also use the <code>Bytes</code> parameter to input an Amazon Textract <code>DetectDocumentText</code> or <code>AnalyzeDocument</code> output file.</p>
/// <p>Provide the input document as a sequence of base64-encoded bytes. If your code uses an Amazon Web Services SDK to detect entities, the SDK may encode the document file bytes for you.</p>
/// <p>The maximum length of this field depends on the input document type. For details, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/idp-inputs-sync.html"> Inputs for real-time custom analysis</a> in the Comprehend Developer Guide.</p>
/// <p>If you use the <code>Bytes</code> parameter, do not use the <code>Text</code> parameter.</p>
pub fn bytes(mut self, input: ::aws_smithy_types::Blob) -> Self {
self.bytes = ::std::option::Option::Some(input);
self
}
/// <p>This field applies only when you use a custom entity recognition model that was trained with PDF annotations. For other cases, enter your text input in the <code>Text</code> field.</p>
/// <p>Use the <code>Bytes</code> parameter to input a text, PDF, Word or image file. Using a plain-text file in the <code>Bytes</code> parameter is equivelent to using the <code>Text</code> parameter (the <code>Entities</code> field in the response is identical).</p>
/// <p>You can also use the <code>Bytes</code> parameter to input an Amazon Textract <code>DetectDocumentText</code> or <code>AnalyzeDocument</code> output file.</p>
/// <p>Provide the input document as a sequence of base64-encoded bytes. If your code uses an Amazon Web Services SDK to detect entities, the SDK may encode the document file bytes for you.</p>
/// <p>The maximum length of this field depends on the input document type. For details, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/idp-inputs-sync.html"> Inputs for real-time custom analysis</a> in the Comprehend Developer Guide.</p>
/// <p>If you use the <code>Bytes</code> parameter, do not use the <code>Text</code> parameter.</p>
pub fn set_bytes(mut self, input: ::std::option::Option<::aws_smithy_types::Blob>) -> Self {
self.bytes = input;
self
}
/// <p>This field applies only when you use a custom entity recognition model that was trained with PDF annotations. For other cases, enter your text input in the <code>Text</code> field.</p>
/// <p>Use the <code>Bytes</code> parameter to input a text, PDF, Word or image file. Using a plain-text file in the <code>Bytes</code> parameter is equivelent to using the <code>Text</code> parameter (the <code>Entities</code> field in the response is identical).</p>
/// <p>You can also use the <code>Bytes</code> parameter to input an Amazon Textract <code>DetectDocumentText</code> or <code>AnalyzeDocument</code> output file.</p>
/// <p>Provide the input document as a sequence of base64-encoded bytes. If your code uses an Amazon Web Services SDK to detect entities, the SDK may encode the document file bytes for you.</p>
/// <p>The maximum length of this field depends on the input document type. For details, see <a href="https://docs.aws.amazon.com/comprehend/latest/dg/idp-inputs-sync.html"> Inputs for real-time custom analysis</a> in the Comprehend Developer Guide.</p>
/// <p>If you use the <code>Bytes</code> parameter, do not use the <code>Text</code> parameter.</p>
pub fn get_bytes(&self) -> &::std::option::Option<::aws_smithy_types::Blob> {
&self.bytes
}
/// <p>Provides configuration parameters to override the default actions for extracting text from PDF documents and image files.</p>
pub fn document_reader_config(mut self, input: crate::types::DocumentReaderConfig) -> Self {
self.document_reader_config = ::std::option::Option::Some(input);
self
}
/// <p>Provides configuration parameters to override the default actions for extracting text from PDF documents and image files.</p>
pub fn set_document_reader_config(mut self, input: ::std::option::Option<crate::types::DocumentReaderConfig>) -> Self {
self.document_reader_config = input;
self
}
/// <p>Provides configuration parameters to override the default actions for extracting text from PDF documents and image files.</p>
pub fn get_document_reader_config(&self) -> &::std::option::Option<crate::types::DocumentReaderConfig> {
&self.document_reader_config
}
/// Consumes the builder and constructs a [`DetectEntitiesInput`](crate::operation::detect_entities::DetectEntitiesInput).
pub fn build(
self,
) -> ::std::result::Result<crate::operation::detect_entities::DetectEntitiesInput, ::aws_smithy_types::error::operation::BuildError> {
::std::result::Result::Ok(crate::operation::detect_entities::DetectEntitiesInput {
text: self.text,
language_code: self.language_code,
endpoint_arn: self.endpoint_arn,
bytes: self.bytes,
document_reader_config: self.document_reader_config,
})
}
}
impl ::std::fmt::Debug for DetectEntitiesInputBuilder {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
let mut formatter = f.debug_struct("DetectEntitiesInputBuilder");
formatter.field("text", &"*** Sensitive Data Redacted ***");
formatter.field("language_code", &self.language_code);
formatter.field("endpoint_arn", &self.endpoint_arn);
formatter.field("bytes", &self.bytes);
formatter.field("document_reader_config", &self.document_reader_config);
formatter.finish()
}
}