1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::fmt::Debug)]
pub struct CreateEndpointInput {
    /// <p>This is the descriptive suffix that becomes part of the <code>EndpointArn</code> used for all subsequent requests to this resource. </p>
    pub endpoint_name: ::std::option::Option<::std::string::String>,
    /// <p>The Amazon Resource Number (ARN) of the model to which the endpoint will be attached.</p>
    pub model_arn: ::std::option::Option<::std::string::String>,
    /// <p> The desired number of inference units to be used by the model using this endpoint. Each inference unit represents of a throughput of 100 characters per second.</p>
    pub desired_inference_units: ::std::option::Option<i32>,
    /// <p>An idempotency token provided by the customer. If this token matches a previous endpoint creation request, Amazon Comprehend will not return a <code>ResourceInUseException</code>. </p>
    pub client_request_token: ::std::option::Option<::std::string::String>,
    /// <p>Tags to associate with the endpoint. A tag is a key-value pair that adds metadata to the endpoint. For example, a tag with "Sales" as the key might be added to an endpoint to indicate its use by the sales department. </p>
    pub tags: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>,
    /// <p>The Amazon Resource Name (ARN) of the IAM role that grants Amazon Comprehend read access to trained custom models encrypted with a customer managed key (ModelKmsKeyId).</p>
    pub data_access_role_arn: ::std::option::Option<::std::string::String>,
    /// <p>The Amazon Resource Number (ARN) of the flywheel to which the endpoint will be attached.</p>
    pub flywheel_arn: ::std::option::Option<::std::string::String>,
}
impl CreateEndpointInput {
    /// <p>This is the descriptive suffix that becomes part of the <code>EndpointArn</code> used for all subsequent requests to this resource. </p>
    pub fn endpoint_name(&self) -> ::std::option::Option<&str> {
        self.endpoint_name.as_deref()
    }
    /// <p>The Amazon Resource Number (ARN) of the model to which the endpoint will be attached.</p>
    pub fn model_arn(&self) -> ::std::option::Option<&str> {
        self.model_arn.as_deref()
    }
    /// <p> The desired number of inference units to be used by the model using this endpoint. Each inference unit represents of a throughput of 100 characters per second.</p>
    pub fn desired_inference_units(&self) -> ::std::option::Option<i32> {
        self.desired_inference_units
    }
    /// <p>An idempotency token provided by the customer. If this token matches a previous endpoint creation request, Amazon Comprehend will not return a <code>ResourceInUseException</code>. </p>
    pub fn client_request_token(&self) -> ::std::option::Option<&str> {
        self.client_request_token.as_deref()
    }
    /// <p>Tags to associate with the endpoint. A tag is a key-value pair that adds metadata to the endpoint. For example, a tag with "Sales" as the key might be added to an endpoint to indicate its use by the sales department. </p>
    pub fn tags(&self) -> ::std::option::Option<&[crate::types::Tag]> {
        self.tags.as_deref()
    }
    /// <p>The Amazon Resource Name (ARN) of the IAM role that grants Amazon Comprehend read access to trained custom models encrypted with a customer managed key (ModelKmsKeyId).</p>
    pub fn data_access_role_arn(&self) -> ::std::option::Option<&str> {
        self.data_access_role_arn.as_deref()
    }
    /// <p>The Amazon Resource Number (ARN) of the flywheel to which the endpoint will be attached.</p>
    pub fn flywheel_arn(&self) -> ::std::option::Option<&str> {
        self.flywheel_arn.as_deref()
    }
}
impl CreateEndpointInput {
    /// Creates a new builder-style object to manufacture [`CreateEndpointInput`](crate::operation::create_endpoint::CreateEndpointInput).
    pub fn builder() -> crate::operation::create_endpoint::builders::CreateEndpointInputBuilder {
        crate::operation::create_endpoint::builders::CreateEndpointInputBuilder::default()
    }
}

/// A builder for [`CreateEndpointInput`](crate::operation::create_endpoint::CreateEndpointInput).
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default, ::std::fmt::Debug)]
pub struct CreateEndpointInputBuilder {
    pub(crate) endpoint_name: ::std::option::Option<::std::string::String>,
    pub(crate) model_arn: ::std::option::Option<::std::string::String>,
    pub(crate) desired_inference_units: ::std::option::Option<i32>,
    pub(crate) client_request_token: ::std::option::Option<::std::string::String>,
    pub(crate) tags: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>,
    pub(crate) data_access_role_arn: ::std::option::Option<::std::string::String>,
    pub(crate) flywheel_arn: ::std::option::Option<::std::string::String>,
}
impl CreateEndpointInputBuilder {
    /// <p>This is the descriptive suffix that becomes part of the <code>EndpointArn</code> used for all subsequent requests to this resource. </p>
    pub fn endpoint_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.endpoint_name = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>This is the descriptive suffix that becomes part of the <code>EndpointArn</code> used for all subsequent requests to this resource. </p>
    pub fn set_endpoint_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.endpoint_name = input;
        self
    }
    /// <p>This is the descriptive suffix that becomes part of the <code>EndpointArn</code> used for all subsequent requests to this resource. </p>
    pub fn get_endpoint_name(&self) -> &::std::option::Option<::std::string::String> {
        &self.endpoint_name
    }
    /// <p>The Amazon Resource Number (ARN) of the model to which the endpoint will be attached.</p>
    pub fn model_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.model_arn = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The Amazon Resource Number (ARN) of the model to which the endpoint will be attached.</p>
    pub fn set_model_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.model_arn = input;
        self
    }
    /// <p>The Amazon Resource Number (ARN) of the model to which the endpoint will be attached.</p>
    pub fn get_model_arn(&self) -> &::std::option::Option<::std::string::String> {
        &self.model_arn
    }
    /// <p> The desired number of inference units to be used by the model using this endpoint. Each inference unit represents of a throughput of 100 characters per second.</p>
    pub fn desired_inference_units(mut self, input: i32) -> Self {
        self.desired_inference_units = ::std::option::Option::Some(input);
        self
    }
    /// <p> The desired number of inference units to be used by the model using this endpoint. Each inference unit represents of a throughput of 100 characters per second.</p>
    pub fn set_desired_inference_units(mut self, input: ::std::option::Option<i32>) -> Self {
        self.desired_inference_units = input;
        self
    }
    /// <p> The desired number of inference units to be used by the model using this endpoint. Each inference unit represents of a throughput of 100 characters per second.</p>
    pub fn get_desired_inference_units(&self) -> &::std::option::Option<i32> {
        &self.desired_inference_units
    }
    /// <p>An idempotency token provided by the customer. If this token matches a previous endpoint creation request, Amazon Comprehend will not return a <code>ResourceInUseException</code>. </p>
    pub fn client_request_token(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.client_request_token = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>An idempotency token provided by the customer. If this token matches a previous endpoint creation request, Amazon Comprehend will not return a <code>ResourceInUseException</code>. </p>
    pub fn set_client_request_token(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.client_request_token = input;
        self
    }
    /// <p>An idempotency token provided by the customer. If this token matches a previous endpoint creation request, Amazon Comprehend will not return a <code>ResourceInUseException</code>. </p>
    pub fn get_client_request_token(&self) -> &::std::option::Option<::std::string::String> {
        &self.client_request_token
    }
    /// Appends an item to `tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p>Tags to associate with the endpoint. A tag is a key-value pair that adds metadata to the endpoint. For example, a tag with "Sales" as the key might be added to an endpoint to indicate its use by the sales department. </p>
    pub fn tags(mut self, input: crate::types::Tag) -> Self {
        let mut v = self.tags.unwrap_or_default();
        v.push(input);
        self.tags = ::std::option::Option::Some(v);
        self
    }
    /// <p>Tags to associate with the endpoint. A tag is a key-value pair that adds metadata to the endpoint. For example, a tag with "Sales" as the key might be added to an endpoint to indicate its use by the sales department. </p>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
        self.tags = input;
        self
    }
    /// <p>Tags to associate with the endpoint. A tag is a key-value pair that adds metadata to the endpoint. For example, a tag with "Sales" as the key might be added to an endpoint to indicate its use by the sales department. </p>
    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
        &self.tags
    }
    /// <p>The Amazon Resource Name (ARN) of the IAM role that grants Amazon Comprehend read access to trained custom models encrypted with a customer managed key (ModelKmsKeyId).</p>
    pub fn data_access_role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.data_access_role_arn = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The Amazon Resource Name (ARN) of the IAM role that grants Amazon Comprehend read access to trained custom models encrypted with a customer managed key (ModelKmsKeyId).</p>
    pub fn set_data_access_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.data_access_role_arn = input;
        self
    }
    /// <p>The Amazon Resource Name (ARN) of the IAM role that grants Amazon Comprehend read access to trained custom models encrypted with a customer managed key (ModelKmsKeyId).</p>
    pub fn get_data_access_role_arn(&self) -> &::std::option::Option<::std::string::String> {
        &self.data_access_role_arn
    }
    /// <p>The Amazon Resource Number (ARN) of the flywheel to which the endpoint will be attached.</p>
    pub fn flywheel_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.flywheel_arn = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The Amazon Resource Number (ARN) of the flywheel to which the endpoint will be attached.</p>
    pub fn set_flywheel_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.flywheel_arn = input;
        self
    }
    /// <p>The Amazon Resource Number (ARN) of the flywheel to which the endpoint will be attached.</p>
    pub fn get_flywheel_arn(&self) -> &::std::option::Option<::std::string::String> {
        &self.flywheel_arn
    }
    /// Consumes the builder and constructs a [`CreateEndpointInput`](crate::operation::create_endpoint::CreateEndpointInput).
    pub fn build(
        self,
    ) -> ::std::result::Result<crate::operation::create_endpoint::CreateEndpointInput, ::aws_smithy_http::operation::error::BuildError> {
        ::std::result::Result::Ok(crate::operation::create_endpoint::CreateEndpointInput {
            endpoint_name: self.endpoint_name,
            model_arn: self.model_arn,
            desired_inference_units: self.desired_inference_units,
            client_request_token: self.client_request_token,
            tags: self.tags,
            data_access_role_arn: self.data_access_role_arn,
            flywheel_arn: self.flywheel_arn,
        })
    }
}