1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(std::clone::Clone, std::cmp::PartialEq, std::fmt::Debug)]
pub struct CreateDatasetInput {
/// <p>The Amazon Resource Number (ARN) of the flywheel of the flywheel to receive the data.</p>
#[doc(hidden)]
pub flywheel_arn: std::option::Option<std::string::String>,
/// <p>Name of the dataset.</p>
#[doc(hidden)]
pub dataset_name: std::option::Option<std::string::String>,
/// <p>The dataset type. You can specify that the data in a dataset is for training the model or for testing the model.</p>
#[doc(hidden)]
pub dataset_type: std::option::Option<crate::types::DatasetType>,
/// <p>Description of the dataset.</p>
#[doc(hidden)]
pub description: std::option::Option<std::string::String>,
/// <p>Information about the input data configuration. The type of input data varies based on the format of the input and whether the data is for a classifier model or an entity recognition model.</p>
#[doc(hidden)]
pub input_data_config: std::option::Option<crate::types::DatasetInputDataConfig>,
/// <p>A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.</p>
#[doc(hidden)]
pub client_request_token: std::option::Option<std::string::String>,
/// <p>Tags for the dataset.</p>
#[doc(hidden)]
pub tags: std::option::Option<std::vec::Vec<crate::types::Tag>>,
}
impl CreateDatasetInput {
/// <p>The Amazon Resource Number (ARN) of the flywheel of the flywheel to receive the data.</p>
pub fn flywheel_arn(&self) -> std::option::Option<&str> {
self.flywheel_arn.as_deref()
}
/// <p>Name of the dataset.</p>
pub fn dataset_name(&self) -> std::option::Option<&str> {
self.dataset_name.as_deref()
}
/// <p>The dataset type. You can specify that the data in a dataset is for training the model or for testing the model.</p>
pub fn dataset_type(&self) -> std::option::Option<&crate::types::DatasetType> {
self.dataset_type.as_ref()
}
/// <p>Description of the dataset.</p>
pub fn description(&self) -> std::option::Option<&str> {
self.description.as_deref()
}
/// <p>Information about the input data configuration. The type of input data varies based on the format of the input and whether the data is for a classifier model or an entity recognition model.</p>
pub fn input_data_config(&self) -> std::option::Option<&crate::types::DatasetInputDataConfig> {
self.input_data_config.as_ref()
}
/// <p>A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.</p>
pub fn client_request_token(&self) -> std::option::Option<&str> {
self.client_request_token.as_deref()
}
/// <p>Tags for the dataset.</p>
pub fn tags(&self) -> std::option::Option<&[crate::types::Tag]> {
self.tags.as_deref()
}
}
impl CreateDatasetInput {
/// Creates a new builder-style object to manufacture [`CreateDatasetInput`](crate::operation::create_dataset::CreateDatasetInput).
pub fn builder() -> crate::operation::create_dataset::builders::CreateDatasetInputBuilder {
crate::operation::create_dataset::builders::CreateDatasetInputBuilder::default()
}
}
/// A builder for [`CreateDatasetInput`](crate::operation::create_dataset::CreateDatasetInput).
#[non_exhaustive]
#[derive(std::clone::Clone, std::cmp::PartialEq, std::default::Default, std::fmt::Debug)]
pub struct CreateDatasetInputBuilder {
pub(crate) flywheel_arn: std::option::Option<std::string::String>,
pub(crate) dataset_name: std::option::Option<std::string::String>,
pub(crate) dataset_type: std::option::Option<crate::types::DatasetType>,
pub(crate) description: std::option::Option<std::string::String>,
pub(crate) input_data_config: std::option::Option<crate::types::DatasetInputDataConfig>,
pub(crate) client_request_token: std::option::Option<std::string::String>,
pub(crate) tags: std::option::Option<std::vec::Vec<crate::types::Tag>>,
}
impl CreateDatasetInputBuilder {
/// <p>The Amazon Resource Number (ARN) of the flywheel of the flywheel to receive the data.</p>
pub fn flywheel_arn(mut self, input: impl Into<std::string::String>) -> Self {
self.flywheel_arn = Some(input.into());
self
}
/// <p>The Amazon Resource Number (ARN) of the flywheel of the flywheel to receive the data.</p>
pub fn set_flywheel_arn(mut self, input: std::option::Option<std::string::String>) -> Self {
self.flywheel_arn = input;
self
}
/// <p>Name of the dataset.</p>
pub fn dataset_name(mut self, input: impl Into<std::string::String>) -> Self {
self.dataset_name = Some(input.into());
self
}
/// <p>Name of the dataset.</p>
pub fn set_dataset_name(mut self, input: std::option::Option<std::string::String>) -> Self {
self.dataset_name = input;
self
}
/// <p>The dataset type. You can specify that the data in a dataset is for training the model or for testing the model.</p>
pub fn dataset_type(mut self, input: crate::types::DatasetType) -> Self {
self.dataset_type = Some(input);
self
}
/// <p>The dataset type. You can specify that the data in a dataset is for training the model or for testing the model.</p>
pub fn set_dataset_type(
mut self,
input: std::option::Option<crate::types::DatasetType>,
) -> Self {
self.dataset_type = input;
self
}
/// <p>Description of the dataset.</p>
pub fn description(mut self, input: impl Into<std::string::String>) -> Self {
self.description = Some(input.into());
self
}
/// <p>Description of the dataset.</p>
pub fn set_description(mut self, input: std::option::Option<std::string::String>) -> Self {
self.description = input;
self
}
/// <p>Information about the input data configuration. The type of input data varies based on the format of the input and whether the data is for a classifier model or an entity recognition model.</p>
pub fn input_data_config(mut self, input: crate::types::DatasetInputDataConfig) -> Self {
self.input_data_config = Some(input);
self
}
/// <p>Information about the input data configuration. The type of input data varies based on the format of the input and whether the data is for a classifier model or an entity recognition model.</p>
pub fn set_input_data_config(
mut self,
input: std::option::Option<crate::types::DatasetInputDataConfig>,
) -> Self {
self.input_data_config = input;
self
}
/// <p>A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.</p>
pub fn client_request_token(mut self, input: impl Into<std::string::String>) -> Self {
self.client_request_token = Some(input.into());
self
}
/// <p>A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.</p>
pub fn set_client_request_token(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.client_request_token = input;
self
}
/// Appends an item to `tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>Tags for the dataset.</p>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
let mut v = self.tags.unwrap_or_default();
v.push(input);
self.tags = Some(v);
self
}
/// <p>Tags for the dataset.</p>
pub fn set_tags(
mut self,
input: std::option::Option<std::vec::Vec<crate::types::Tag>>,
) -> Self {
self.tags = input;
self
}
/// Consumes the builder and constructs a [`CreateDatasetInput`](crate::operation::create_dataset::CreateDatasetInput).
pub fn build(
self,
) -> Result<
crate::operation::create_dataset::CreateDatasetInput,
aws_smithy_http::operation::error::BuildError,
> {
Ok(crate::operation::create_dataset::CreateDatasetInput {
flywheel_arn: self.flywheel_arn,
dataset_name: self.dataset_name,
dataset_type: self.dataset_type,
description: self.description,
input_data_config: self.input_data_config,
client_request_token: self.client_request_token,
tags: self.tags,
})
}
}