1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::put_anomaly_detector::_put_anomaly_detector_output::PutAnomalyDetectorOutputBuilder;
pub use crate::operation::put_anomaly_detector::_put_anomaly_detector_input::PutAnomalyDetectorInputBuilder;
/// Fluent builder constructing a request to `PutAnomalyDetector`.
///
/// <p>Creates an anomaly detection model for a CloudWatch metric. You can use the model to display a band of expected normal values when the metric is graphed.</p>
/// <p>For more information, see <a href="https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html">CloudWatch Anomaly Detection</a>.</p>
#[derive(std::clone::Clone, std::fmt::Debug)]
pub struct PutAnomalyDetectorFluentBuilder {
handle: std::sync::Arc<crate::client::Handle>,
inner: crate::operation::put_anomaly_detector::builders::PutAnomalyDetectorInputBuilder,
}
impl PutAnomalyDetectorFluentBuilder {
/// Creates a new `PutAnomalyDetector`.
pub(crate) fn new(handle: std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: Default::default(),
}
}
/// Consume this builder, creating a customizable operation that can be modified before being
/// sent. The operation's inner [http::Request] can be modified as well.
pub async fn customize(
self,
) -> std::result::Result<
crate::client::customize::CustomizableOperation<
crate::operation::put_anomaly_detector::PutAnomalyDetector,
aws_http::retry::AwsResponseRetryClassifier,
>,
aws_smithy_http::result::SdkError<
crate::operation::put_anomaly_detector::PutAnomalyDetectorError,
>,
> {
let handle = self.handle.clone();
let operation = self
.inner
.build()
.map_err(aws_smithy_http::result::SdkError::construction_failure)?
.make_operation(&handle.conf)
.await
.map_err(aws_smithy_http::result::SdkError::construction_failure)?;
Ok(crate::client::customize::CustomizableOperation { handle, operation })
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> std::result::Result<
crate::operation::put_anomaly_detector::PutAnomalyDetectorOutput,
aws_smithy_http::result::SdkError<
crate::operation::put_anomaly_detector::PutAnomalyDetectorError,
>,
> {
let op = self
.inner
.build()
.map_err(aws_smithy_http::result::SdkError::construction_failure)?
.make_operation(&self.handle.conf)
.await
.map_err(aws_smithy_http::result::SdkError::construction_failure)?;
self.handle.client.call(op).await
}
/// <p>The namespace of the metric to create the anomaly detection model for.</p>
#[deprecated(note = "Use SingleMetricAnomalyDetector.")]
pub fn namespace(mut self, input: impl Into<std::string::String>) -> Self {
self.inner = self.inner.namespace(input.into());
self
}
/// <p>The namespace of the metric to create the anomaly detection model for.</p>
#[deprecated(note = "Use SingleMetricAnomalyDetector.")]
pub fn set_namespace(mut self, input: std::option::Option<std::string::String>) -> Self {
self.inner = self.inner.set_namespace(input);
self
}
/// <p>The name of the metric to create the anomaly detection model for.</p>
#[deprecated(note = "Use SingleMetricAnomalyDetector.")]
pub fn metric_name(mut self, input: impl Into<std::string::String>) -> Self {
self.inner = self.inner.metric_name(input.into());
self
}
/// <p>The name of the metric to create the anomaly detection model for.</p>
#[deprecated(note = "Use SingleMetricAnomalyDetector.")]
pub fn set_metric_name(mut self, input: std::option::Option<std::string::String>) -> Self {
self.inner = self.inner.set_metric_name(input);
self
}
/// Appends an item to `Dimensions`.
///
/// To override the contents of this collection use [`set_dimensions`](Self::set_dimensions).
///
/// <p>The metric dimensions to create the anomaly detection model for.</p>
#[deprecated(note = "Use SingleMetricAnomalyDetector.")]
pub fn dimensions(mut self, input: crate::types::Dimension) -> Self {
self.inner = self.inner.dimensions(input);
self
}
/// <p>The metric dimensions to create the anomaly detection model for.</p>
#[deprecated(note = "Use SingleMetricAnomalyDetector.")]
pub fn set_dimensions(
mut self,
input: std::option::Option<std::vec::Vec<crate::types::Dimension>>,
) -> Self {
self.inner = self.inner.set_dimensions(input);
self
}
/// <p>The statistic to use for the metric and the anomaly detection model.</p>
#[deprecated(note = "Use SingleMetricAnomalyDetector.")]
pub fn stat(mut self, input: impl Into<std::string::String>) -> Self {
self.inner = self.inner.stat(input.into());
self
}
/// <p>The statistic to use for the metric and the anomaly detection model.</p>
#[deprecated(note = "Use SingleMetricAnomalyDetector.")]
pub fn set_stat(mut self, input: std::option::Option<std::string::String>) -> Self {
self.inner = self.inner.set_stat(input);
self
}
/// <p>The configuration specifies details about how the anomaly detection model is to be trained, including time ranges to exclude when training and updating the model. You can specify as many as 10 time ranges.</p>
/// <p>The configuration can also include the time zone to use for the metric.</p>
pub fn configuration(mut self, input: crate::types::AnomalyDetectorConfiguration) -> Self {
self.inner = self.inner.configuration(input);
self
}
/// <p>The configuration specifies details about how the anomaly detection model is to be trained, including time ranges to exclude when training and updating the model. You can specify as many as 10 time ranges.</p>
/// <p>The configuration can also include the time zone to use for the metric.</p>
pub fn set_configuration(
mut self,
input: std::option::Option<crate::types::AnomalyDetectorConfiguration>,
) -> Self {
self.inner = self.inner.set_configuration(input);
self
}
/// <p>A single metric anomaly detector to be created.</p>
/// <p>When using <code>SingleMetricAnomalyDetector</code>, you cannot include the following parameters in the same operation:</p>
/// <ul>
/// <li> <p> <code>Dimensions</code> </p> </li>
/// <li> <p> <code>MetricName</code> </p> </li>
/// <li> <p> <code>Namespace</code> </p> </li>
/// <li> <p> <code>Stat</code> </p> </li>
/// <li> <p>the <code>MetricMatchAnomalyDetector</code> parameters of <code>PutAnomalyDetectorInput</code> </p> </li>
/// </ul>
/// <p>Instead, specify the single metric anomaly detector attributes as part of the property <code>SingleMetricAnomalyDetector</code>.</p>
pub fn single_metric_anomaly_detector(
mut self,
input: crate::types::SingleMetricAnomalyDetector,
) -> Self {
self.inner = self.inner.single_metric_anomaly_detector(input);
self
}
/// <p>A single metric anomaly detector to be created.</p>
/// <p>When using <code>SingleMetricAnomalyDetector</code>, you cannot include the following parameters in the same operation:</p>
/// <ul>
/// <li> <p> <code>Dimensions</code> </p> </li>
/// <li> <p> <code>MetricName</code> </p> </li>
/// <li> <p> <code>Namespace</code> </p> </li>
/// <li> <p> <code>Stat</code> </p> </li>
/// <li> <p>the <code>MetricMatchAnomalyDetector</code> parameters of <code>PutAnomalyDetectorInput</code> </p> </li>
/// </ul>
/// <p>Instead, specify the single metric anomaly detector attributes as part of the property <code>SingleMetricAnomalyDetector</code>.</p>
pub fn set_single_metric_anomaly_detector(
mut self,
input: std::option::Option<crate::types::SingleMetricAnomalyDetector>,
) -> Self {
self.inner = self.inner.set_single_metric_anomaly_detector(input);
self
}
/// <p>The metric math anomaly detector to be created.</p>
/// <p>When using <code>MetricMathAnomalyDetector</code>, you cannot include the following parameters in the same operation:</p>
/// <ul>
/// <li> <p> <code>Dimensions</code> </p> </li>
/// <li> <p> <code>MetricName</code> </p> </li>
/// <li> <p> <code>Namespace</code> </p> </li>
/// <li> <p> <code>Stat</code> </p> </li>
/// <li> <p>the <code>SingleMetricAnomalyDetector</code> parameters of <code>PutAnomalyDetectorInput</code> </p> </li>
/// </ul>
/// <p>Instead, specify the metric math anomaly detector attributes as part of the property <code>MetricMathAnomalyDetector</code>.</p>
pub fn metric_math_anomaly_detector(
mut self,
input: crate::types::MetricMathAnomalyDetector,
) -> Self {
self.inner = self.inner.metric_math_anomaly_detector(input);
self
}
/// <p>The metric math anomaly detector to be created.</p>
/// <p>When using <code>MetricMathAnomalyDetector</code>, you cannot include the following parameters in the same operation:</p>
/// <ul>
/// <li> <p> <code>Dimensions</code> </p> </li>
/// <li> <p> <code>MetricName</code> </p> </li>
/// <li> <p> <code>Namespace</code> </p> </li>
/// <li> <p> <code>Stat</code> </p> </li>
/// <li> <p>the <code>SingleMetricAnomalyDetector</code> parameters of <code>PutAnomalyDetectorInput</code> </p> </li>
/// </ul>
/// <p>Instead, specify the metric math anomaly detector attributes as part of the property <code>MetricMathAnomalyDetector</code>.</p>
pub fn set_metric_math_anomaly_detector(
mut self,
input: std::option::Option<crate::types::MetricMathAnomalyDetector>,
) -> Self {
self.inner = self.inner.set_metric_math_anomaly_detector(input);
self
}
}