aws_sdk_cleanroomsml/operation/create_trained_model/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_trained_model::_create_trained_model_output::CreateTrainedModelOutputBuilder;
3
4pub use crate::operation::create_trained_model::_create_trained_model_input::CreateTrainedModelInputBuilder;
5
6impl crate::operation::create_trained_model::builders::CreateTrainedModelInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_trained_model::CreateTrainedModelOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_trained_model::CreateTrainedModelError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_trained_model();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreateTrainedModel`.
24///
25/// <p>Creates a trained model from an associated configured model algorithm using data from any member of the collaboration.</p>
26#[derive(::std::clone::Clone, ::std::fmt::Debug)]
27pub struct CreateTrainedModelFluentBuilder {
28 handle: ::std::sync::Arc<crate::client::Handle>,
29 inner: crate::operation::create_trained_model::builders::CreateTrainedModelInputBuilder,
30 config_override: ::std::option::Option<crate::config::Builder>,
31}
32impl
33 crate::client::customize::internal::CustomizableSend<
34 crate::operation::create_trained_model::CreateTrainedModelOutput,
35 crate::operation::create_trained_model::CreateTrainedModelError,
36 > for CreateTrainedModelFluentBuilder
37{
38 fn send(
39 self,
40 config_override: crate::config::Builder,
41 ) -> crate::client::customize::internal::BoxFuture<
42 crate::client::customize::internal::SendResult<
43 crate::operation::create_trained_model::CreateTrainedModelOutput,
44 crate::operation::create_trained_model::CreateTrainedModelError,
45 >,
46 > {
47 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
48 }
49}
50impl CreateTrainedModelFluentBuilder {
51 /// Creates a new `CreateTrainedModelFluentBuilder`.
52 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
53 Self {
54 handle,
55 inner: ::std::default::Default::default(),
56 config_override: ::std::option::Option::None,
57 }
58 }
59 /// Access the CreateTrainedModel as a reference.
60 pub fn as_input(&self) -> &crate::operation::create_trained_model::builders::CreateTrainedModelInputBuilder {
61 &self.inner
62 }
63 /// Sends the request and returns the response.
64 ///
65 /// If an error occurs, an `SdkError` will be returned with additional details that
66 /// can be matched against.
67 ///
68 /// By default, any retryable failures will be retried twice. Retry behavior
69 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
70 /// set when configuring the client.
71 pub async fn send(
72 self,
73 ) -> ::std::result::Result<
74 crate::operation::create_trained_model::CreateTrainedModelOutput,
75 ::aws_smithy_runtime_api::client::result::SdkError<
76 crate::operation::create_trained_model::CreateTrainedModelError,
77 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
78 >,
79 > {
80 let input = self
81 .inner
82 .build()
83 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
84 let runtime_plugins = crate::operation::create_trained_model::CreateTrainedModel::operation_runtime_plugins(
85 self.handle.runtime_plugins.clone(),
86 &self.handle.conf,
87 self.config_override,
88 );
89 crate::operation::create_trained_model::CreateTrainedModel::orchestrate(&runtime_plugins, input).await
90 }
91
92 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
93 pub fn customize(
94 self,
95 ) -> crate::client::customize::CustomizableOperation<
96 crate::operation::create_trained_model::CreateTrainedModelOutput,
97 crate::operation::create_trained_model::CreateTrainedModelError,
98 Self,
99 > {
100 crate::client::customize::CustomizableOperation::new(self)
101 }
102 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
103 self.set_config_override(::std::option::Option::Some(config_override.into()));
104 self
105 }
106
107 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
108 self.config_override = config_override;
109 self
110 }
111 /// <p>The membership ID of the member that is creating the trained model.</p>
112 pub fn membership_identifier(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
113 self.inner = self.inner.membership_identifier(input.into());
114 self
115 }
116 /// <p>The membership ID of the member that is creating the trained model.</p>
117 pub fn set_membership_identifier(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
118 self.inner = self.inner.set_membership_identifier(input);
119 self
120 }
121 /// <p>The membership ID of the member that is creating the trained model.</p>
122 pub fn get_membership_identifier(&self) -> &::std::option::Option<::std::string::String> {
123 self.inner.get_membership_identifier()
124 }
125 /// <p>The name of the trained model.</p>
126 pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
127 self.inner = self.inner.name(input.into());
128 self
129 }
130 /// <p>The name of the trained model.</p>
131 pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
132 self.inner = self.inner.set_name(input);
133 self
134 }
135 /// <p>The name of the trained model.</p>
136 pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
137 self.inner.get_name()
138 }
139 /// <p>The associated configured model algorithm used to train this model.</p>
140 pub fn configured_model_algorithm_association_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
141 self.inner = self.inner.configured_model_algorithm_association_arn(input.into());
142 self
143 }
144 /// <p>The associated configured model algorithm used to train this model.</p>
145 pub fn set_configured_model_algorithm_association_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
146 self.inner = self.inner.set_configured_model_algorithm_association_arn(input);
147 self
148 }
149 /// <p>The associated configured model algorithm used to train this model.</p>
150 pub fn get_configured_model_algorithm_association_arn(&self) -> &::std::option::Option<::std::string::String> {
151 self.inner.get_configured_model_algorithm_association_arn()
152 }
153 ///
154 /// Adds a key-value pair to `hyperparameters`.
155 ///
156 /// To override the contents of this collection use [`set_hyperparameters`](Self::set_hyperparameters).
157 ///
158 /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process.</p>
159 pub fn hyperparameters(
160 mut self,
161 k: impl ::std::convert::Into<::std::string::String>,
162 v: impl ::std::convert::Into<::std::string::String>,
163 ) -> Self {
164 self.inner = self.inner.hyperparameters(k.into(), v.into());
165 self
166 }
167 /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process.</p>
168 pub fn set_hyperparameters(
169 mut self,
170 input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
171 ) -> Self {
172 self.inner = self.inner.set_hyperparameters(input);
173 self
174 }
175 /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process.</p>
176 pub fn get_hyperparameters(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
177 self.inner.get_hyperparameters()
178 }
179 ///
180 /// Adds a key-value pair to `environment`.
181 ///
182 /// To override the contents of this collection use [`set_environment`](Self::set_environment).
183 ///
184 /// <p>The environment variables to set in the Docker container.</p>
185 pub fn environment(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
186 self.inner = self.inner.environment(k.into(), v.into());
187 self
188 }
189 /// <p>The environment variables to set in the Docker container.</p>
190 pub fn set_environment(
191 mut self,
192 input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
193 ) -> Self {
194 self.inner = self.inner.set_environment(input);
195 self
196 }
197 /// <p>The environment variables to set in the Docker container.</p>
198 pub fn get_environment(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
199 self.inner.get_environment()
200 }
201 /// <p>Information about the EC2 resources that are used to train this model.</p>
202 pub fn resource_config(mut self, input: crate::types::ResourceConfig) -> Self {
203 self.inner = self.inner.resource_config(input);
204 self
205 }
206 /// <p>Information about the EC2 resources that are used to train this model.</p>
207 pub fn set_resource_config(mut self, input: ::std::option::Option<crate::types::ResourceConfig>) -> Self {
208 self.inner = self.inner.set_resource_config(input);
209 self
210 }
211 /// <p>Information about the EC2 resources that are used to train this model.</p>
212 pub fn get_resource_config(&self) -> &::std::option::Option<crate::types::ResourceConfig> {
213 self.inner.get_resource_config()
214 }
215 /// <p>The criteria that is used to stop model training.</p>
216 pub fn stopping_condition(mut self, input: crate::types::StoppingCondition) -> Self {
217 self.inner = self.inner.stopping_condition(input);
218 self
219 }
220 /// <p>The criteria that is used to stop model training.</p>
221 pub fn set_stopping_condition(mut self, input: ::std::option::Option<crate::types::StoppingCondition>) -> Self {
222 self.inner = self.inner.set_stopping_condition(input);
223 self
224 }
225 /// <p>The criteria that is used to stop model training.</p>
226 pub fn get_stopping_condition(&self) -> &::std::option::Option<crate::types::StoppingCondition> {
227 self.inner.get_stopping_condition()
228 }
229 ///
230 /// Appends an item to `incrementalTrainingDataChannels`.
231 ///
232 /// To override the contents of this collection use [`set_incremental_training_data_channels`](Self::set_incremental_training_data_channels).
233 ///
234 /// <p>Specifies the incremental training data channels for the trained model.</p>
235 /// <p>Incremental training allows you to create a new trained model with updates without retraining from scratch. You can specify up to one incremental training data channel that references a previously trained model and its version.</p>
236 /// <p>Limit: Maximum of 20 channels total (including both <code>incrementalTrainingDataChannels</code> and <code>dataChannels</code>).</p>
237 pub fn incremental_training_data_channels(mut self, input: crate::types::IncrementalTrainingDataChannel) -> Self {
238 self.inner = self.inner.incremental_training_data_channels(input);
239 self
240 }
241 /// <p>Specifies the incremental training data channels for the trained model.</p>
242 /// <p>Incremental training allows you to create a new trained model with updates without retraining from scratch. You can specify up to one incremental training data channel that references a previously trained model and its version.</p>
243 /// <p>Limit: Maximum of 20 channels total (including both <code>incrementalTrainingDataChannels</code> and <code>dataChannels</code>).</p>
244 pub fn set_incremental_training_data_channels(
245 mut self,
246 input: ::std::option::Option<::std::vec::Vec<crate::types::IncrementalTrainingDataChannel>>,
247 ) -> Self {
248 self.inner = self.inner.set_incremental_training_data_channels(input);
249 self
250 }
251 /// <p>Specifies the incremental training data channels for the trained model.</p>
252 /// <p>Incremental training allows you to create a new trained model with updates without retraining from scratch. You can specify up to one incremental training data channel that references a previously trained model and its version.</p>
253 /// <p>Limit: Maximum of 20 channels total (including both <code>incrementalTrainingDataChannels</code> and <code>dataChannels</code>).</p>
254 pub fn get_incremental_training_data_channels(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::IncrementalTrainingDataChannel>> {
255 self.inner.get_incremental_training_data_channels()
256 }
257 ///
258 /// Appends an item to `dataChannels`.
259 ///
260 /// To override the contents of this collection use [`set_data_channels`](Self::set_data_channels).
261 ///
262 /// <p>Defines the data channels that are used as input for the trained model request.</p>
263 /// <p>Limit: Maximum of 20 channels total (including both <code>dataChannels</code> and <code>incrementalTrainingDataChannels</code>).</p>
264 pub fn data_channels(mut self, input: crate::types::ModelTrainingDataChannel) -> Self {
265 self.inner = self.inner.data_channels(input);
266 self
267 }
268 /// <p>Defines the data channels that are used as input for the trained model request.</p>
269 /// <p>Limit: Maximum of 20 channels total (including both <code>dataChannels</code> and <code>incrementalTrainingDataChannels</code>).</p>
270 pub fn set_data_channels(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::ModelTrainingDataChannel>>) -> Self {
271 self.inner = self.inner.set_data_channels(input);
272 self
273 }
274 /// <p>Defines the data channels that are used as input for the trained model request.</p>
275 /// <p>Limit: Maximum of 20 channels total (including both <code>dataChannels</code> and <code>incrementalTrainingDataChannels</code>).</p>
276 pub fn get_data_channels(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::ModelTrainingDataChannel>> {
277 self.inner.get_data_channels()
278 }
279 /// <p>The input mode for accessing the training data. This parameter determines how the training data is made available to the training algorithm. Valid values are:</p>
280 /// <ul>
281 /// <li>
282 /// <p><code>File</code> - The training data is downloaded to the training instance and made available as files.</p></li>
283 /// <li>
284 /// <p><code>FastFile</code> - The training data is streamed directly from Amazon S3 to the training algorithm, providing faster access for large datasets.</p></li>
285 /// <li>
286 /// <p><code>Pipe</code> - The training data is streamed to the training algorithm using named pipes, which can improve performance for certain algorithms.</p></li>
287 /// </ul>
288 pub fn training_input_mode(mut self, input: crate::types::TrainingInputMode) -> Self {
289 self.inner = self.inner.training_input_mode(input);
290 self
291 }
292 /// <p>The input mode for accessing the training data. This parameter determines how the training data is made available to the training algorithm. Valid values are:</p>
293 /// <ul>
294 /// <li>
295 /// <p><code>File</code> - The training data is downloaded to the training instance and made available as files.</p></li>
296 /// <li>
297 /// <p><code>FastFile</code> - The training data is streamed directly from Amazon S3 to the training algorithm, providing faster access for large datasets.</p></li>
298 /// <li>
299 /// <p><code>Pipe</code> - The training data is streamed to the training algorithm using named pipes, which can improve performance for certain algorithms.</p></li>
300 /// </ul>
301 pub fn set_training_input_mode(mut self, input: ::std::option::Option<crate::types::TrainingInputMode>) -> Self {
302 self.inner = self.inner.set_training_input_mode(input);
303 self
304 }
305 /// <p>The input mode for accessing the training data. This parameter determines how the training data is made available to the training algorithm. Valid values are:</p>
306 /// <ul>
307 /// <li>
308 /// <p><code>File</code> - The training data is downloaded to the training instance and made available as files.</p></li>
309 /// <li>
310 /// <p><code>FastFile</code> - The training data is streamed directly from Amazon S3 to the training algorithm, providing faster access for large datasets.</p></li>
311 /// <li>
312 /// <p><code>Pipe</code> - The training data is streamed to the training algorithm using named pipes, which can improve performance for certain algorithms.</p></li>
313 /// </ul>
314 pub fn get_training_input_mode(&self) -> &::std::option::Option<crate::types::TrainingInputMode> {
315 self.inner.get_training_input_mode()
316 }
317 /// <p>The description of the trained model.</p>
318 pub fn description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
319 self.inner = self.inner.description(input.into());
320 self
321 }
322 /// <p>The description of the trained model.</p>
323 pub fn set_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
324 self.inner = self.inner.set_description(input);
325 self
326 }
327 /// <p>The description of the trained model.</p>
328 pub fn get_description(&self) -> &::std::option::Option<::std::string::String> {
329 self.inner.get_description()
330 }
331 /// <p>The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the trained ML model and the associated data.</p>
332 pub fn kms_key_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
333 self.inner = self.inner.kms_key_arn(input.into());
334 self
335 }
336 /// <p>The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the trained ML model and the associated data.</p>
337 pub fn set_kms_key_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
338 self.inner = self.inner.set_kms_key_arn(input);
339 self
340 }
341 /// <p>The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the trained ML model and the associated data.</p>
342 pub fn get_kms_key_arn(&self) -> &::std::option::Option<::std::string::String> {
343 self.inner.get_kms_key_arn()
344 }
345 ///
346 /// Adds a key-value pair to `tags`.
347 ///
348 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
349 ///
350 /// <p>The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
351 /// <p>The following basic restrictions apply to tags:</p>
352 /// <ul>
353 /// <li>
354 /// <p>Maximum number of tags per resource - 50.</p></li>
355 /// <li>
356 /// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
357 /// <li>
358 /// <p>Maximum key length - 128 Unicode characters in UTF-8.</p></li>
359 /// <li>
360 /// <p>Maximum value length - 256 Unicode characters in UTF-8.</p></li>
361 /// <li>
362 /// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
363 /// <li>
364 /// <p>Tag keys and values are case sensitive.</p></li>
365 /// <li>
366 /// <p>Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.</p></li>
367 /// </ul>
368 pub fn tags(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
369 self.inner = self.inner.tags(k.into(), v.into());
370 self
371 }
372 /// <p>The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
373 /// <p>The following basic restrictions apply to tags:</p>
374 /// <ul>
375 /// <li>
376 /// <p>Maximum number of tags per resource - 50.</p></li>
377 /// <li>
378 /// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
379 /// <li>
380 /// <p>Maximum key length - 128 Unicode characters in UTF-8.</p></li>
381 /// <li>
382 /// <p>Maximum value length - 256 Unicode characters in UTF-8.</p></li>
383 /// <li>
384 /// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
385 /// <li>
386 /// <p>Tag keys and values are case sensitive.</p></li>
387 /// <li>
388 /// <p>Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.</p></li>
389 /// </ul>
390 pub fn set_tags(mut self, input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>) -> Self {
391 self.inner = self.inner.set_tags(input);
392 self
393 }
394 /// <p>The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p>
395 /// <p>The following basic restrictions apply to tags:</p>
396 /// <ul>
397 /// <li>
398 /// <p>Maximum number of tags per resource - 50.</p></li>
399 /// <li>
400 /// <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p></li>
401 /// <li>
402 /// <p>Maximum key length - 128 Unicode characters in UTF-8.</p></li>
403 /// <li>
404 /// <p>Maximum value length - 256 Unicode characters in UTF-8.</p></li>
405 /// <li>
406 /// <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p></li>
407 /// <li>
408 /// <p>Tag keys and values are case sensitive.</p></li>
409 /// <li>
410 /// <p>Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.</p></li>
411 /// </ul>
412 pub fn get_tags(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
413 self.inner.get_tags()
414 }
415}