aws_sdk_bedrockruntime/operation/converse/
_converse_input.rs

1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2#[allow(missing_docs)] // documentation missing in model
3#[non_exhaustive]
4#[derive(::std::clone::Clone, ::std::cmp::PartialEq)]
5pub struct ConverseInput {
6    /// <p>Specifies the model or throughput with which to run inference, or the prompt resource to use in inference. The value depends on the resource that you use:</p>
7    /// <ul>
8    /// <li>
9    /// <p>If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html#model-ids-arns">Amazon Bedrock base model IDs (on-demand throughput)</a> in the Amazon Bedrock User Guide.</p></li>
10    /// <li>
11    /// <p>If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference-support.html">Supported Regions and models for cross-region inference</a> in the Amazon Bedrock User Guide.</p></li>
12    /// <li>
13    /// <p>If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html">Run inference using a Provisioned Throughput</a> in the Amazon Bedrock User Guide.</p></li>
14    /// <li>
15    /// <p>If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html">Use a custom model in Amazon Bedrock</a> in the Amazon Bedrock User Guide.</p></li>
16    /// <li>
17    /// <p>To include a prompt that was defined in <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-management.html">Prompt management</a>, specify the ARN of the prompt version to use.</p></li>
18    /// </ul>
19    /// <p>The Converse API doesn't support <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html">imported models</a>.</p>
20    pub model_id: ::std::option::Option<::std::string::String>,
21    /// <p>The messages that you want to send to the model.</p>
22    pub messages: ::std::option::Option<::std::vec::Vec<crate::types::Message>>,
23    /// <p>A prompt that provides instructions or context to the model about the task it should perform, or the persona it should adopt during the conversation.</p>
24    pub system: ::std::option::Option<::std::vec::Vec<crate::types::SystemContentBlock>>,
25    /// <p>Inference parameters to pass to the model. <code>Converse</code> and <code>ConverseStream</code> support a base set of inference parameters. If you need to pass additional parameters that the model supports, use the <code>additionalModelRequestFields</code> request field.</p>
26    pub inference_config: ::std::option::Option<crate::types::InferenceConfiguration>,
27    /// <p>Configuration information for the tools that the model can use when generating a response.</p>
28    /// <p>For information about models that support tool use, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html#conversation-inference-supported-models-features">Supported models and model features</a>.</p>
29    pub tool_config: ::std::option::Option<crate::types::ToolConfiguration>,
30    /// <p>Configuration information for a guardrail that you want to use in the request. If you include <code>guardContent</code> blocks in the <code>content</code> field in the <code>messages</code> field, the guardrail operates only on those messages. If you include no <code>guardContent</code> blocks, the guardrail operates on all messages in the request body and in any included prompt resource.</p>
31    pub guardrail_config: ::std::option::Option<crate::types::GuardrailConfiguration>,
32    /// <p>Additional inference parameters that the model supports, beyond the base set of inference parameters that <code>Converse</code> and <code>ConverseStream</code> support in the <code>inferenceConfig</code> field. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html">Model parameters</a>.</p>
33    pub additional_model_request_fields: ::std::option::Option<::aws_smithy_types::Document>,
34    /// <p>Contains a map of variables in a prompt from Prompt management to objects containing the values to fill in for them when running model invocation. This field is ignored if you don't specify a prompt resource in the <code>modelId</code> field.</p>
35    pub prompt_variables: ::std::option::Option<::std::collections::HashMap<::std::string::String, crate::types::PromptVariableValues>>,
36    /// <p>Additional model parameters field paths to return in the response. <code>Converse</code> and <code>ConverseStream</code> return the requested fields as a JSON Pointer object in the <code>additionalModelResponseFields</code> field. The following is example JSON for <code>additionalModelResponseFieldPaths</code>.</p>
37    /// <p><code>\[ "/stop_sequence" \]</code></p>
38    /// <p>For information about the JSON Pointer syntax, see the <a href="https://datatracker.ietf.org/doc/html/rfc6901">Internet Engineering Task Force (IETF)</a> documentation.</p>
39    /// <p><code>Converse</code> and <code>ConverseStream</code> reject an empty JSON Pointer or incorrectly structured JSON Pointer with a <code>400</code> error code. if the JSON Pointer is valid, but the requested field is not in the model response, it is ignored by <code>Converse</code>.</p>
40    pub additional_model_response_field_paths: ::std::option::Option<::std::vec::Vec<::std::string::String>>,
41    /// <p>Key-value pairs that you can use to filter invocation logs.</p>
42    pub request_metadata: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
43    /// <p>Model performance settings for the request.</p>
44    pub performance_config: ::std::option::Option<crate::types::PerformanceConfiguration>,
45}
46impl ConverseInput {
47    /// <p>Specifies the model or throughput with which to run inference, or the prompt resource to use in inference. The value depends on the resource that you use:</p>
48    /// <ul>
49    /// <li>
50    /// <p>If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html#model-ids-arns">Amazon Bedrock base model IDs (on-demand throughput)</a> in the Amazon Bedrock User Guide.</p></li>
51    /// <li>
52    /// <p>If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference-support.html">Supported Regions and models for cross-region inference</a> in the Amazon Bedrock User Guide.</p></li>
53    /// <li>
54    /// <p>If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html">Run inference using a Provisioned Throughput</a> in the Amazon Bedrock User Guide.</p></li>
55    /// <li>
56    /// <p>If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html">Use a custom model in Amazon Bedrock</a> in the Amazon Bedrock User Guide.</p></li>
57    /// <li>
58    /// <p>To include a prompt that was defined in <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-management.html">Prompt management</a>, specify the ARN of the prompt version to use.</p></li>
59    /// </ul>
60    /// <p>The Converse API doesn't support <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html">imported models</a>.</p>
61    pub fn model_id(&self) -> ::std::option::Option<&str> {
62        self.model_id.as_deref()
63    }
64    /// <p>The messages that you want to send to the model.</p>
65    ///
66    /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.messages.is_none()`.
67    pub fn messages(&self) -> &[crate::types::Message] {
68        self.messages.as_deref().unwrap_or_default()
69    }
70    /// <p>A prompt that provides instructions or context to the model about the task it should perform, or the persona it should adopt during the conversation.</p>
71    ///
72    /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.system.is_none()`.
73    pub fn system(&self) -> &[crate::types::SystemContentBlock] {
74        self.system.as_deref().unwrap_or_default()
75    }
76    /// <p>Inference parameters to pass to the model. <code>Converse</code> and <code>ConverseStream</code> support a base set of inference parameters. If you need to pass additional parameters that the model supports, use the <code>additionalModelRequestFields</code> request field.</p>
77    pub fn inference_config(&self) -> ::std::option::Option<&crate::types::InferenceConfiguration> {
78        self.inference_config.as_ref()
79    }
80    /// <p>Configuration information for the tools that the model can use when generating a response.</p>
81    /// <p>For information about models that support tool use, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html#conversation-inference-supported-models-features">Supported models and model features</a>.</p>
82    pub fn tool_config(&self) -> ::std::option::Option<&crate::types::ToolConfiguration> {
83        self.tool_config.as_ref()
84    }
85    /// <p>Configuration information for a guardrail that you want to use in the request. If you include <code>guardContent</code> blocks in the <code>content</code> field in the <code>messages</code> field, the guardrail operates only on those messages. If you include no <code>guardContent</code> blocks, the guardrail operates on all messages in the request body and in any included prompt resource.</p>
86    pub fn guardrail_config(&self) -> ::std::option::Option<&crate::types::GuardrailConfiguration> {
87        self.guardrail_config.as_ref()
88    }
89    /// <p>Additional inference parameters that the model supports, beyond the base set of inference parameters that <code>Converse</code> and <code>ConverseStream</code> support in the <code>inferenceConfig</code> field. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html">Model parameters</a>.</p>
90    pub fn additional_model_request_fields(&self) -> ::std::option::Option<&::aws_smithy_types::Document> {
91        self.additional_model_request_fields.as_ref()
92    }
93    /// <p>Contains a map of variables in a prompt from Prompt management to objects containing the values to fill in for them when running model invocation. This field is ignored if you don't specify a prompt resource in the <code>modelId</code> field.</p>
94    pub fn prompt_variables(&self) -> ::std::option::Option<&::std::collections::HashMap<::std::string::String, crate::types::PromptVariableValues>> {
95        self.prompt_variables.as_ref()
96    }
97    /// <p>Additional model parameters field paths to return in the response. <code>Converse</code> and <code>ConverseStream</code> return the requested fields as a JSON Pointer object in the <code>additionalModelResponseFields</code> field. The following is example JSON for <code>additionalModelResponseFieldPaths</code>.</p>
98    /// <p><code>\[ "/stop_sequence" \]</code></p>
99    /// <p>For information about the JSON Pointer syntax, see the <a href="https://datatracker.ietf.org/doc/html/rfc6901">Internet Engineering Task Force (IETF)</a> documentation.</p>
100    /// <p><code>Converse</code> and <code>ConverseStream</code> reject an empty JSON Pointer or incorrectly structured JSON Pointer with a <code>400</code> error code. if the JSON Pointer is valid, but the requested field is not in the model response, it is ignored by <code>Converse</code>.</p>
101    ///
102    /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.additional_model_response_field_paths.is_none()`.
103    pub fn additional_model_response_field_paths(&self) -> &[::std::string::String] {
104        self.additional_model_response_field_paths.as_deref().unwrap_or_default()
105    }
106    /// <p>Key-value pairs that you can use to filter invocation logs.</p>
107    pub fn request_metadata(&self) -> ::std::option::Option<&::std::collections::HashMap<::std::string::String, ::std::string::String>> {
108        self.request_metadata.as_ref()
109    }
110    /// <p>Model performance settings for the request.</p>
111    pub fn performance_config(&self) -> ::std::option::Option<&crate::types::PerformanceConfiguration> {
112        self.performance_config.as_ref()
113    }
114}
115impl ::std::fmt::Debug for ConverseInput {
116    fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
117        let mut formatter = f.debug_struct("ConverseInput");
118        formatter.field("model_id", &self.model_id);
119        formatter.field("messages", &self.messages);
120        formatter.field("system", &self.system);
121        formatter.field("inference_config", &self.inference_config);
122        formatter.field("tool_config", &self.tool_config);
123        formatter.field("guardrail_config", &self.guardrail_config);
124        formatter.field("additional_model_request_fields", &self.additional_model_request_fields);
125        formatter.field("prompt_variables", &"*** Sensitive Data Redacted ***");
126        formatter.field("additional_model_response_field_paths", &self.additional_model_response_field_paths);
127        formatter.field("request_metadata", &"*** Sensitive Data Redacted ***");
128        formatter.field("performance_config", &self.performance_config);
129        formatter.finish()
130    }
131}
132impl ConverseInput {
133    /// Creates a new builder-style object to manufacture [`ConverseInput`](crate::operation::converse::ConverseInput).
134    pub fn builder() -> crate::operation::converse::builders::ConverseInputBuilder {
135        crate::operation::converse::builders::ConverseInputBuilder::default()
136    }
137}
138
139/// A builder for [`ConverseInput`](crate::operation::converse::ConverseInput).
140#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default)]
141#[non_exhaustive]
142pub struct ConverseInputBuilder {
143    pub(crate) model_id: ::std::option::Option<::std::string::String>,
144    pub(crate) messages: ::std::option::Option<::std::vec::Vec<crate::types::Message>>,
145    pub(crate) system: ::std::option::Option<::std::vec::Vec<crate::types::SystemContentBlock>>,
146    pub(crate) inference_config: ::std::option::Option<crate::types::InferenceConfiguration>,
147    pub(crate) tool_config: ::std::option::Option<crate::types::ToolConfiguration>,
148    pub(crate) guardrail_config: ::std::option::Option<crate::types::GuardrailConfiguration>,
149    pub(crate) additional_model_request_fields: ::std::option::Option<::aws_smithy_types::Document>,
150    pub(crate) prompt_variables: ::std::option::Option<::std::collections::HashMap<::std::string::String, crate::types::PromptVariableValues>>,
151    pub(crate) additional_model_response_field_paths: ::std::option::Option<::std::vec::Vec<::std::string::String>>,
152    pub(crate) request_metadata: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
153    pub(crate) performance_config: ::std::option::Option<crate::types::PerformanceConfiguration>,
154}
155impl ConverseInputBuilder {
156    /// <p>Specifies the model or throughput with which to run inference, or the prompt resource to use in inference. The value depends on the resource that you use:</p>
157    /// <ul>
158    /// <li>
159    /// <p>If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html#model-ids-arns">Amazon Bedrock base model IDs (on-demand throughput)</a> in the Amazon Bedrock User Guide.</p></li>
160    /// <li>
161    /// <p>If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference-support.html">Supported Regions and models for cross-region inference</a> in the Amazon Bedrock User Guide.</p></li>
162    /// <li>
163    /// <p>If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html">Run inference using a Provisioned Throughput</a> in the Amazon Bedrock User Guide.</p></li>
164    /// <li>
165    /// <p>If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html">Use a custom model in Amazon Bedrock</a> in the Amazon Bedrock User Guide.</p></li>
166    /// <li>
167    /// <p>To include a prompt that was defined in <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-management.html">Prompt management</a>, specify the ARN of the prompt version to use.</p></li>
168    /// </ul>
169    /// <p>The Converse API doesn't support <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html">imported models</a>.</p>
170    /// This field is required.
171    pub fn model_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
172        self.model_id = ::std::option::Option::Some(input.into());
173        self
174    }
175    /// <p>Specifies the model or throughput with which to run inference, or the prompt resource to use in inference. The value depends on the resource that you use:</p>
176    /// <ul>
177    /// <li>
178    /// <p>If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html#model-ids-arns">Amazon Bedrock base model IDs (on-demand throughput)</a> in the Amazon Bedrock User Guide.</p></li>
179    /// <li>
180    /// <p>If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference-support.html">Supported Regions and models for cross-region inference</a> in the Amazon Bedrock User Guide.</p></li>
181    /// <li>
182    /// <p>If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html">Run inference using a Provisioned Throughput</a> in the Amazon Bedrock User Guide.</p></li>
183    /// <li>
184    /// <p>If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html">Use a custom model in Amazon Bedrock</a> in the Amazon Bedrock User Guide.</p></li>
185    /// <li>
186    /// <p>To include a prompt that was defined in <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-management.html">Prompt management</a>, specify the ARN of the prompt version to use.</p></li>
187    /// </ul>
188    /// <p>The Converse API doesn't support <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html">imported models</a>.</p>
189    pub fn set_model_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
190        self.model_id = input;
191        self
192    }
193    /// <p>Specifies the model or throughput with which to run inference, or the prompt resource to use in inference. The value depends on the resource that you use:</p>
194    /// <ul>
195    /// <li>
196    /// <p>If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html#model-ids-arns">Amazon Bedrock base model IDs (on-demand throughput)</a> in the Amazon Bedrock User Guide.</p></li>
197    /// <li>
198    /// <p>If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference-support.html">Supported Regions and models for cross-region inference</a> in the Amazon Bedrock User Guide.</p></li>
199    /// <li>
200    /// <p>If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html">Run inference using a Provisioned Throughput</a> in the Amazon Bedrock User Guide.</p></li>
201    /// <li>
202    /// <p>If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html">Use a custom model in Amazon Bedrock</a> in the Amazon Bedrock User Guide.</p></li>
203    /// <li>
204    /// <p>To include a prompt that was defined in <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-management.html">Prompt management</a>, specify the ARN of the prompt version to use.</p></li>
205    /// </ul>
206    /// <p>The Converse API doesn't support <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html">imported models</a>.</p>
207    pub fn get_model_id(&self) -> &::std::option::Option<::std::string::String> {
208        &self.model_id
209    }
210    /// Appends an item to `messages`.
211    ///
212    /// To override the contents of this collection use [`set_messages`](Self::set_messages).
213    ///
214    /// <p>The messages that you want to send to the model.</p>
215    pub fn messages(mut self, input: crate::types::Message) -> Self {
216        let mut v = self.messages.unwrap_or_default();
217        v.push(input);
218        self.messages = ::std::option::Option::Some(v);
219        self
220    }
221    /// <p>The messages that you want to send to the model.</p>
222    pub fn set_messages(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Message>>) -> Self {
223        self.messages = input;
224        self
225    }
226    /// <p>The messages that you want to send to the model.</p>
227    pub fn get_messages(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Message>> {
228        &self.messages
229    }
230    /// Appends an item to `system`.
231    ///
232    /// To override the contents of this collection use [`set_system`](Self::set_system).
233    ///
234    /// <p>A prompt that provides instructions or context to the model about the task it should perform, or the persona it should adopt during the conversation.</p>
235    pub fn system(mut self, input: crate::types::SystemContentBlock) -> Self {
236        let mut v = self.system.unwrap_or_default();
237        v.push(input);
238        self.system = ::std::option::Option::Some(v);
239        self
240    }
241    /// <p>A prompt that provides instructions or context to the model about the task it should perform, or the persona it should adopt during the conversation.</p>
242    pub fn set_system(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::SystemContentBlock>>) -> Self {
243        self.system = input;
244        self
245    }
246    /// <p>A prompt that provides instructions or context to the model about the task it should perform, or the persona it should adopt during the conversation.</p>
247    pub fn get_system(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::SystemContentBlock>> {
248        &self.system
249    }
250    /// <p>Inference parameters to pass to the model. <code>Converse</code> and <code>ConverseStream</code> support a base set of inference parameters. If you need to pass additional parameters that the model supports, use the <code>additionalModelRequestFields</code> request field.</p>
251    pub fn inference_config(mut self, input: crate::types::InferenceConfiguration) -> Self {
252        self.inference_config = ::std::option::Option::Some(input);
253        self
254    }
255    /// <p>Inference parameters to pass to the model. <code>Converse</code> and <code>ConverseStream</code> support a base set of inference parameters. If you need to pass additional parameters that the model supports, use the <code>additionalModelRequestFields</code> request field.</p>
256    pub fn set_inference_config(mut self, input: ::std::option::Option<crate::types::InferenceConfiguration>) -> Self {
257        self.inference_config = input;
258        self
259    }
260    /// <p>Inference parameters to pass to the model. <code>Converse</code> and <code>ConverseStream</code> support a base set of inference parameters. If you need to pass additional parameters that the model supports, use the <code>additionalModelRequestFields</code> request field.</p>
261    pub fn get_inference_config(&self) -> &::std::option::Option<crate::types::InferenceConfiguration> {
262        &self.inference_config
263    }
264    /// <p>Configuration information for the tools that the model can use when generating a response.</p>
265    /// <p>For information about models that support tool use, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html#conversation-inference-supported-models-features">Supported models and model features</a>.</p>
266    pub fn tool_config(mut self, input: crate::types::ToolConfiguration) -> Self {
267        self.tool_config = ::std::option::Option::Some(input);
268        self
269    }
270    /// <p>Configuration information for the tools that the model can use when generating a response.</p>
271    /// <p>For information about models that support tool use, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html#conversation-inference-supported-models-features">Supported models and model features</a>.</p>
272    pub fn set_tool_config(mut self, input: ::std::option::Option<crate::types::ToolConfiguration>) -> Self {
273        self.tool_config = input;
274        self
275    }
276    /// <p>Configuration information for the tools that the model can use when generating a response.</p>
277    /// <p>For information about models that support tool use, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html#conversation-inference-supported-models-features">Supported models and model features</a>.</p>
278    pub fn get_tool_config(&self) -> &::std::option::Option<crate::types::ToolConfiguration> {
279        &self.tool_config
280    }
281    /// <p>Configuration information for a guardrail that you want to use in the request. If you include <code>guardContent</code> blocks in the <code>content</code> field in the <code>messages</code> field, the guardrail operates only on those messages. If you include no <code>guardContent</code> blocks, the guardrail operates on all messages in the request body and in any included prompt resource.</p>
282    pub fn guardrail_config(mut self, input: crate::types::GuardrailConfiguration) -> Self {
283        self.guardrail_config = ::std::option::Option::Some(input);
284        self
285    }
286    /// <p>Configuration information for a guardrail that you want to use in the request. If you include <code>guardContent</code> blocks in the <code>content</code> field in the <code>messages</code> field, the guardrail operates only on those messages. If you include no <code>guardContent</code> blocks, the guardrail operates on all messages in the request body and in any included prompt resource.</p>
287    pub fn set_guardrail_config(mut self, input: ::std::option::Option<crate::types::GuardrailConfiguration>) -> Self {
288        self.guardrail_config = input;
289        self
290    }
291    /// <p>Configuration information for a guardrail that you want to use in the request. If you include <code>guardContent</code> blocks in the <code>content</code> field in the <code>messages</code> field, the guardrail operates only on those messages. If you include no <code>guardContent</code> blocks, the guardrail operates on all messages in the request body and in any included prompt resource.</p>
292    pub fn get_guardrail_config(&self) -> &::std::option::Option<crate::types::GuardrailConfiguration> {
293        &self.guardrail_config
294    }
295    /// <p>Additional inference parameters that the model supports, beyond the base set of inference parameters that <code>Converse</code> and <code>ConverseStream</code> support in the <code>inferenceConfig</code> field. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html">Model parameters</a>.</p>
296    pub fn additional_model_request_fields(mut self, input: ::aws_smithy_types::Document) -> Self {
297        self.additional_model_request_fields = ::std::option::Option::Some(input);
298        self
299    }
300    /// <p>Additional inference parameters that the model supports, beyond the base set of inference parameters that <code>Converse</code> and <code>ConverseStream</code> support in the <code>inferenceConfig</code> field. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html">Model parameters</a>.</p>
301    pub fn set_additional_model_request_fields(mut self, input: ::std::option::Option<::aws_smithy_types::Document>) -> Self {
302        self.additional_model_request_fields = input;
303        self
304    }
305    /// <p>Additional inference parameters that the model supports, beyond the base set of inference parameters that <code>Converse</code> and <code>ConverseStream</code> support in the <code>inferenceConfig</code> field. For more information, see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html">Model parameters</a>.</p>
306    pub fn get_additional_model_request_fields(&self) -> &::std::option::Option<::aws_smithy_types::Document> {
307        &self.additional_model_request_fields
308    }
309    /// Adds a key-value pair to `prompt_variables`.
310    ///
311    /// To override the contents of this collection use [`set_prompt_variables`](Self::set_prompt_variables).
312    ///
313    /// <p>Contains a map of variables in a prompt from Prompt management to objects containing the values to fill in for them when running model invocation. This field is ignored if you don't specify a prompt resource in the <code>modelId</code> field.</p>
314    pub fn prompt_variables(mut self, k: impl ::std::convert::Into<::std::string::String>, v: crate::types::PromptVariableValues) -> Self {
315        let mut hash_map = self.prompt_variables.unwrap_or_default();
316        hash_map.insert(k.into(), v);
317        self.prompt_variables = ::std::option::Option::Some(hash_map);
318        self
319    }
320    /// <p>Contains a map of variables in a prompt from Prompt management to objects containing the values to fill in for them when running model invocation. This field is ignored if you don't specify a prompt resource in the <code>modelId</code> field.</p>
321    pub fn set_prompt_variables(
322        mut self,
323        input: ::std::option::Option<::std::collections::HashMap<::std::string::String, crate::types::PromptVariableValues>>,
324    ) -> Self {
325        self.prompt_variables = input;
326        self
327    }
328    /// <p>Contains a map of variables in a prompt from Prompt management to objects containing the values to fill in for them when running model invocation. This field is ignored if you don't specify a prompt resource in the <code>modelId</code> field.</p>
329    pub fn get_prompt_variables(
330        &self,
331    ) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, crate::types::PromptVariableValues>> {
332        &self.prompt_variables
333    }
334    /// Appends an item to `additional_model_response_field_paths`.
335    ///
336    /// To override the contents of this collection use [`set_additional_model_response_field_paths`](Self::set_additional_model_response_field_paths).
337    ///
338    /// <p>Additional model parameters field paths to return in the response. <code>Converse</code> and <code>ConverseStream</code> return the requested fields as a JSON Pointer object in the <code>additionalModelResponseFields</code> field. The following is example JSON for <code>additionalModelResponseFieldPaths</code>.</p>
339    /// <p><code>\[ "/stop_sequence" \]</code></p>
340    /// <p>For information about the JSON Pointer syntax, see the <a href="https://datatracker.ietf.org/doc/html/rfc6901">Internet Engineering Task Force (IETF)</a> documentation.</p>
341    /// <p><code>Converse</code> and <code>ConverseStream</code> reject an empty JSON Pointer or incorrectly structured JSON Pointer with a <code>400</code> error code. if the JSON Pointer is valid, but the requested field is not in the model response, it is ignored by <code>Converse</code>.</p>
342    pub fn additional_model_response_field_paths(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
343        let mut v = self.additional_model_response_field_paths.unwrap_or_default();
344        v.push(input.into());
345        self.additional_model_response_field_paths = ::std::option::Option::Some(v);
346        self
347    }
348    /// <p>Additional model parameters field paths to return in the response. <code>Converse</code> and <code>ConverseStream</code> return the requested fields as a JSON Pointer object in the <code>additionalModelResponseFields</code> field. The following is example JSON for <code>additionalModelResponseFieldPaths</code>.</p>
349    /// <p><code>\[ "/stop_sequence" \]</code></p>
350    /// <p>For information about the JSON Pointer syntax, see the <a href="https://datatracker.ietf.org/doc/html/rfc6901">Internet Engineering Task Force (IETF)</a> documentation.</p>
351    /// <p><code>Converse</code> and <code>ConverseStream</code> reject an empty JSON Pointer or incorrectly structured JSON Pointer with a <code>400</code> error code. if the JSON Pointer is valid, but the requested field is not in the model response, it is ignored by <code>Converse</code>.</p>
352    pub fn set_additional_model_response_field_paths(mut self, input: ::std::option::Option<::std::vec::Vec<::std::string::String>>) -> Self {
353        self.additional_model_response_field_paths = input;
354        self
355    }
356    /// <p>Additional model parameters field paths to return in the response. <code>Converse</code> and <code>ConverseStream</code> return the requested fields as a JSON Pointer object in the <code>additionalModelResponseFields</code> field. The following is example JSON for <code>additionalModelResponseFieldPaths</code>.</p>
357    /// <p><code>\[ "/stop_sequence" \]</code></p>
358    /// <p>For information about the JSON Pointer syntax, see the <a href="https://datatracker.ietf.org/doc/html/rfc6901">Internet Engineering Task Force (IETF)</a> documentation.</p>
359    /// <p><code>Converse</code> and <code>ConverseStream</code> reject an empty JSON Pointer or incorrectly structured JSON Pointer with a <code>400</code> error code. if the JSON Pointer is valid, but the requested field is not in the model response, it is ignored by <code>Converse</code>.</p>
360    pub fn get_additional_model_response_field_paths(&self) -> &::std::option::Option<::std::vec::Vec<::std::string::String>> {
361        &self.additional_model_response_field_paths
362    }
363    /// Adds a key-value pair to `request_metadata`.
364    ///
365    /// To override the contents of this collection use [`set_request_metadata`](Self::set_request_metadata).
366    ///
367    /// <p>Key-value pairs that you can use to filter invocation logs.</p>
368    pub fn request_metadata(
369        mut self,
370        k: impl ::std::convert::Into<::std::string::String>,
371        v: impl ::std::convert::Into<::std::string::String>,
372    ) -> Self {
373        let mut hash_map = self.request_metadata.unwrap_or_default();
374        hash_map.insert(k.into(), v.into());
375        self.request_metadata = ::std::option::Option::Some(hash_map);
376        self
377    }
378    /// <p>Key-value pairs that you can use to filter invocation logs.</p>
379    pub fn set_request_metadata(
380        mut self,
381        input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
382    ) -> Self {
383        self.request_metadata = input;
384        self
385    }
386    /// <p>Key-value pairs that you can use to filter invocation logs.</p>
387    pub fn get_request_metadata(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
388        &self.request_metadata
389    }
390    /// <p>Model performance settings for the request.</p>
391    pub fn performance_config(mut self, input: crate::types::PerformanceConfiguration) -> Self {
392        self.performance_config = ::std::option::Option::Some(input);
393        self
394    }
395    /// <p>Model performance settings for the request.</p>
396    pub fn set_performance_config(mut self, input: ::std::option::Option<crate::types::PerformanceConfiguration>) -> Self {
397        self.performance_config = input;
398        self
399    }
400    /// <p>Model performance settings for the request.</p>
401    pub fn get_performance_config(&self) -> &::std::option::Option<crate::types::PerformanceConfiguration> {
402        &self.performance_config
403    }
404    /// Consumes the builder and constructs a [`ConverseInput`](crate::operation::converse::ConverseInput).
405    pub fn build(self) -> ::std::result::Result<crate::operation::converse::ConverseInput, ::aws_smithy_types::error::operation::BuildError> {
406        ::std::result::Result::Ok(crate::operation::converse::ConverseInput {
407            model_id: self.model_id,
408            messages: self.messages,
409            system: self.system,
410            inference_config: self.inference_config,
411            tool_config: self.tool_config,
412            guardrail_config: self.guardrail_config,
413            additional_model_request_fields: self.additional_model_request_fields,
414            prompt_variables: self.prompt_variables,
415            additional_model_response_field_paths: self.additional_model_response_field_paths,
416            request_metadata: self.request_metadata,
417            performance_config: self.performance_config,
418        })
419    }
420}
421impl ::std::fmt::Debug for ConverseInputBuilder {
422    fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
423        let mut formatter = f.debug_struct("ConverseInputBuilder");
424        formatter.field("model_id", &self.model_id);
425        formatter.field("messages", &self.messages);
426        formatter.field("system", &self.system);
427        formatter.field("inference_config", &self.inference_config);
428        formatter.field("tool_config", &self.tool_config);
429        formatter.field("guardrail_config", &self.guardrail_config);
430        formatter.field("additional_model_request_fields", &self.additional_model_request_fields);
431        formatter.field("prompt_variables", &"*** Sensitive Data Redacted ***");
432        formatter.field("additional_model_response_field_paths", &self.additional_model_response_field_paths);
433        formatter.field("request_metadata", &"*** Sensitive Data Redacted ***");
434        formatter.field("performance_config", &self.performance_config);
435        formatter.finish()
436    }
437}