1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_resolver::_create_resolver_output::CreateResolverOutputBuilder;

pub use crate::operation::create_resolver::_create_resolver_input::CreateResolverInputBuilder;

/// Fluent builder constructing a request to `CreateResolver`.
///
/// <p>Creates a <code>Resolver</code> object.</p>
/// <p>A resolver converts incoming requests into a format that a data source can understand, and converts the data source's responses into GraphQL.</p>
#[derive(std::clone::Clone, std::fmt::Debug)]
pub struct CreateResolverFluentBuilder {
    handle: std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_resolver::builders::CreateResolverInputBuilder,
}
impl CreateResolverFluentBuilder {
    /// Creates a new `CreateResolver`.
    pub(crate) fn new(handle: std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: Default::default(),
        }
    }

    /// Consume this builder, creating a customizable operation that can be modified before being
    /// sent. The operation's inner [http::Request] can be modified as well.
    pub async fn customize(
        self,
    ) -> std::result::Result<
        crate::client::customize::CustomizableOperation<
            crate::operation::create_resolver::CreateResolver,
            aws_http::retry::AwsResponseRetryClassifier,
        >,
        aws_smithy_http::result::SdkError<crate::operation::create_resolver::CreateResolverError>,
    > {
        let handle = self.handle.clone();
        let operation = self
            .inner
            .build()
            .map_err(aws_smithy_http::result::SdkError::construction_failure)?
            .make_operation(&handle.conf)
            .await
            .map_err(aws_smithy_http::result::SdkError::construction_failure)?;
        Ok(crate::client::customize::CustomizableOperation { handle, operation })
    }

    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> std::result::Result<
        crate::operation::create_resolver::CreateResolverOutput,
        aws_smithy_http::result::SdkError<crate::operation::create_resolver::CreateResolverError>,
    > {
        let op = self
            .inner
            .build()
            .map_err(aws_smithy_http::result::SdkError::construction_failure)?
            .make_operation(&self.handle.conf)
            .await
            .map_err(aws_smithy_http::result::SdkError::construction_failure)?;
        self.handle.client.call(op).await
    }
    /// <p>The ID for the GraphQL API for which the resolver is being created.</p>
    pub fn api_id(mut self, input: impl Into<std::string::String>) -> Self {
        self.inner = self.inner.api_id(input.into());
        self
    }
    /// <p>The ID for the GraphQL API for which the resolver is being created.</p>
    pub fn set_api_id(mut self, input: std::option::Option<std::string::String>) -> Self {
        self.inner = self.inner.set_api_id(input);
        self
    }
    /// <p>The name of the <code>Type</code>.</p>
    pub fn type_name(mut self, input: impl Into<std::string::String>) -> Self {
        self.inner = self.inner.type_name(input.into());
        self
    }
    /// <p>The name of the <code>Type</code>.</p>
    pub fn set_type_name(mut self, input: std::option::Option<std::string::String>) -> Self {
        self.inner = self.inner.set_type_name(input);
        self
    }
    /// <p>The name of the field to attach the resolver to.</p>
    pub fn field_name(mut self, input: impl Into<std::string::String>) -> Self {
        self.inner = self.inner.field_name(input.into());
        self
    }
    /// <p>The name of the field to attach the resolver to.</p>
    pub fn set_field_name(mut self, input: std::option::Option<std::string::String>) -> Self {
        self.inner = self.inner.set_field_name(input);
        self
    }
    /// <p>The name of the data source for which the resolver is being created.</p>
    pub fn data_source_name(mut self, input: impl Into<std::string::String>) -> Self {
        self.inner = self.inner.data_source_name(input.into());
        self
    }
    /// <p>The name of the data source for which the resolver is being created.</p>
    pub fn set_data_source_name(mut self, input: std::option::Option<std::string::String>) -> Self {
        self.inner = self.inner.set_data_source_name(input);
        self
    }
    /// <p>The mapping template to use for requests.</p>
    /// <p>A resolver uses a request mapping template to convert a GraphQL expression into a format that a data source can understand. Mapping templates are written in Apache Velocity Template Language (VTL).</p>
    /// <p>VTL request mapping templates are optional when using an Lambda data source. For all other data sources, VTL request and response mapping templates are required.</p>
    pub fn request_mapping_template(mut self, input: impl Into<std::string::String>) -> Self {
        self.inner = self.inner.request_mapping_template(input.into());
        self
    }
    /// <p>The mapping template to use for requests.</p>
    /// <p>A resolver uses a request mapping template to convert a GraphQL expression into a format that a data source can understand. Mapping templates are written in Apache Velocity Template Language (VTL).</p>
    /// <p>VTL request mapping templates are optional when using an Lambda data source. For all other data sources, VTL request and response mapping templates are required.</p>
    pub fn set_request_mapping_template(
        mut self,
        input: std::option::Option<std::string::String>,
    ) -> Self {
        self.inner = self.inner.set_request_mapping_template(input);
        self
    }
    /// <p>The mapping template to use for responses from the data source.</p>
    pub fn response_mapping_template(mut self, input: impl Into<std::string::String>) -> Self {
        self.inner = self.inner.response_mapping_template(input.into());
        self
    }
    /// <p>The mapping template to use for responses from the data source.</p>
    pub fn set_response_mapping_template(
        mut self,
        input: std::option::Option<std::string::String>,
    ) -> Self {
        self.inner = self.inner.set_response_mapping_template(input);
        self
    }
    /// <p>The resolver type.</p>
    /// <ul>
    /// <li> <p> <b>UNIT</b>: A UNIT resolver type. A UNIT resolver is the default resolver type. You can use a UNIT resolver to run a GraphQL query against a single data source.</p> </li>
    /// <li> <p> <b>PIPELINE</b>: A PIPELINE resolver type. You can use a PIPELINE resolver to invoke a series of <code>Function</code> objects in a serial manner. You can use a pipeline resolver to run a GraphQL query against multiple data sources.</p> </li>
    /// </ul>
    pub fn kind(mut self, input: crate::types::ResolverKind) -> Self {
        self.inner = self.inner.kind(input);
        self
    }
    /// <p>The resolver type.</p>
    /// <ul>
    /// <li> <p> <b>UNIT</b>: A UNIT resolver type. A UNIT resolver is the default resolver type. You can use a UNIT resolver to run a GraphQL query against a single data source.</p> </li>
    /// <li> <p> <b>PIPELINE</b>: A PIPELINE resolver type. You can use a PIPELINE resolver to invoke a series of <code>Function</code> objects in a serial manner. You can use a pipeline resolver to run a GraphQL query against multiple data sources.</p> </li>
    /// </ul>
    pub fn set_kind(mut self, input: std::option::Option<crate::types::ResolverKind>) -> Self {
        self.inner = self.inner.set_kind(input);
        self
    }
    /// <p>The <code>PipelineConfig</code>.</p>
    pub fn pipeline_config(mut self, input: crate::types::PipelineConfig) -> Self {
        self.inner = self.inner.pipeline_config(input);
        self
    }
    /// <p>The <code>PipelineConfig</code>.</p>
    pub fn set_pipeline_config(
        mut self,
        input: std::option::Option<crate::types::PipelineConfig>,
    ) -> Self {
        self.inner = self.inner.set_pipeline_config(input);
        self
    }
    /// <p>The <code>SyncConfig</code> for a resolver attached to a versioned data source.</p>
    pub fn sync_config(mut self, input: crate::types::SyncConfig) -> Self {
        self.inner = self.inner.sync_config(input);
        self
    }
    /// <p>The <code>SyncConfig</code> for a resolver attached to a versioned data source.</p>
    pub fn set_sync_config(mut self, input: std::option::Option<crate::types::SyncConfig>) -> Self {
        self.inner = self.inner.set_sync_config(input);
        self
    }
    /// <p>The caching configuration for the resolver.</p>
    pub fn caching_config(mut self, input: crate::types::CachingConfig) -> Self {
        self.inner = self.inner.caching_config(input);
        self
    }
    /// <p>The caching configuration for the resolver.</p>
    pub fn set_caching_config(
        mut self,
        input: std::option::Option<crate::types::CachingConfig>,
    ) -> Self {
        self.inner = self.inner.set_caching_config(input);
        self
    }
    /// <p>The maximum batching size for a resolver.</p>
    pub fn max_batch_size(mut self, input: i32) -> Self {
        self.inner = self.inner.max_batch_size(input);
        self
    }
    /// <p>The maximum batching size for a resolver.</p>
    pub fn set_max_batch_size(mut self, input: std::option::Option<i32>) -> Self {
        self.inner = self.inner.set_max_batch_size(input);
        self
    }
    /// <p>Describes a runtime used by an Amazon Web Services AppSync pipeline resolver or Amazon Web Services AppSync function. Specifies the name and version of the runtime to use. Note that if a runtime is specified, code must also be specified.</p>
    pub fn runtime(mut self, input: crate::types::AppSyncRuntime) -> Self {
        self.inner = self.inner.runtime(input);
        self
    }
    /// <p>Describes a runtime used by an Amazon Web Services AppSync pipeline resolver or Amazon Web Services AppSync function. Specifies the name and version of the runtime to use. Note that if a runtime is specified, code must also be specified.</p>
    pub fn set_runtime(mut self, input: std::option::Option<crate::types::AppSyncRuntime>) -> Self {
        self.inner = self.inner.set_runtime(input);
        self
    }
    /// <p>The <code>resolver</code> code that contains the request and response functions. When code is used, the <code>runtime</code> is required. The <code>runtime</code> value must be <code>APPSYNC_JS</code>.</p>
    pub fn code(mut self, input: impl Into<std::string::String>) -> Self {
        self.inner = self.inner.code(input.into());
        self
    }
    /// <p>The <code>resolver</code> code that contains the request and response functions. When code is used, the <code>runtime</code> is required. The <code>runtime</code> value must be <code>APPSYNC_JS</code>.</p>
    pub fn set_code(mut self, input: std::option::Option<std::string::String>) -> Self {
        self.inner = self.inner.set_code(input);
        self
    }
}