ScheduledActionBuilder

Struct ScheduledActionBuilder 

Source
#[non_exhaustive]
pub struct ScheduledActionBuilder { /* private fields */ }
Expand description

A builder for ScheduledAction.

Implementations§

Source§

impl ScheduledActionBuilder

Source

pub fn scheduled_action_name(self, input: impl Into<String>) -> Self

The name of the scheduled action.

This field is required.
Source

pub fn set_scheduled_action_name(self, input: Option<String>) -> Self

The name of the scheduled action.

Source

pub fn get_scheduled_action_name(&self) -> &Option<String>

The name of the scheduled action.

Source

pub fn scheduled_action_arn(self, input: impl Into<String>) -> Self

The Amazon Resource Name (ARN) of the scheduled action.

This field is required.
Source

pub fn set_scheduled_action_arn(self, input: Option<String>) -> Self

The Amazon Resource Name (ARN) of the scheduled action.

Source

pub fn get_scheduled_action_arn(&self) -> &Option<String>

The Amazon Resource Name (ARN) of the scheduled action.

Source

pub fn service_namespace(self, input: ServiceNamespace) -> Self

The namespace of the Amazon Web Services service that provides the resource, or a custom-resource.

This field is required.
Source

pub fn set_service_namespace(self, input: Option<ServiceNamespace>) -> Self

The namespace of the Amazon Web Services service that provides the resource, or a custom-resource.

Source

pub fn get_service_namespace(&self) -> &Option<ServiceNamespace>

The namespace of the Amazon Web Services service that provides the resource, or a custom-resource.

Source

pub fn schedule(self, input: impl Into<String>) -> Self

The schedule for this action. The following formats are supported:

  • At expressions - "at(yyyy-mm-ddThh:mm:ss)"

  • Rate expressions - "rate(value unit)"

  • Cron expressions - "cron(fields)"

At expressions are useful for one-time schedules. Cron expressions are useful for scheduled actions that run periodically at a specified date and time, and rate expressions are useful for scheduled actions that run at a regular interval.

At and cron expressions use Universal Coordinated Time (UTC) by default.

The cron format consists of six fields separated by white spaces: \[Minutes\] \[Hours\] \[Day_of_Month\] \[Month\] \[Day_of_Week\] \[Year\].

For rate expressions, value is a positive integer and unit is minute | minutes | hour | hours | day | days.

For more information, see Schedule recurring scaling actions using cron expressions in the Application Auto Scaling User Guide.

This field is required.
Source

pub fn set_schedule(self, input: Option<String>) -> Self

The schedule for this action. The following formats are supported:

  • At expressions - "at(yyyy-mm-ddThh:mm:ss)"

  • Rate expressions - "rate(value unit)"

  • Cron expressions - "cron(fields)"

At expressions are useful for one-time schedules. Cron expressions are useful for scheduled actions that run periodically at a specified date and time, and rate expressions are useful for scheduled actions that run at a regular interval.

At and cron expressions use Universal Coordinated Time (UTC) by default.

The cron format consists of six fields separated by white spaces: \[Minutes\] \[Hours\] \[Day_of_Month\] \[Month\] \[Day_of_Week\] \[Year\].

For rate expressions, value is a positive integer and unit is minute | minutes | hour | hours | day | days.

For more information, see Schedule recurring scaling actions using cron expressions in the Application Auto Scaling User Guide.

Source

pub fn get_schedule(&self) -> &Option<String>

The schedule for this action. The following formats are supported:

  • At expressions - "at(yyyy-mm-ddThh:mm:ss)"

  • Rate expressions - "rate(value unit)"

  • Cron expressions - "cron(fields)"

At expressions are useful for one-time schedules. Cron expressions are useful for scheduled actions that run periodically at a specified date and time, and rate expressions are useful for scheduled actions that run at a regular interval.

At and cron expressions use Universal Coordinated Time (UTC) by default.

The cron format consists of six fields separated by white spaces: \[Minutes\] \[Hours\] \[Day_of_Month\] \[Month\] \[Day_of_Week\] \[Year\].

For rate expressions, value is a positive integer and unit is minute | minutes | hour | hours | day | days.

For more information, see Schedule recurring scaling actions using cron expressions in the Application Auto Scaling User Guide.

Source

pub fn timezone(self, input: impl Into<String>) -> Self

The time zone used when referring to the date and time of a scheduled action, when the scheduled action uses an at or cron expression.

Source

pub fn set_timezone(self, input: Option<String>) -> Self

The time zone used when referring to the date and time of a scheduled action, when the scheduled action uses an at or cron expression.

Source

pub fn get_timezone(&self) -> &Option<String>

The time zone used when referring to the date and time of a scheduled action, when the scheduled action uses an at or cron expression.

Source

pub fn resource_id(self, input: impl Into<String>) -> Self

The identifier of the resource associated with the scaling policy. This string consists of the resource type and unique identifier.

  • ECS service - The resource type is service and the unique identifier is the cluster name and service name. Example: service/my-cluster/my-service.

  • Spot Fleet - The resource type is spot-fleet-request and the unique identifier is the Spot Fleet request ID. Example: spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE.

  • EMR cluster - The resource type is instancegroup and the unique identifier is the cluster ID and instance group ID. Example: instancegroup/j-2EEZNYKUA1NTV/ig-1791Y4E1L8YI0.

  • AppStream 2.0 fleet - The resource type is fleet and the unique identifier is the fleet name. Example: fleet/sample-fleet.

  • DynamoDB table - The resource type is table and the unique identifier is the table name. Example: table/my-table.

  • DynamoDB global secondary index - The resource type is index and the unique identifier is the index name. Example: table/my-table/index/my-table-index.

  • Aurora DB cluster - The resource type is cluster and the unique identifier is the cluster name. Example: cluster:my-db-cluster.

  • SageMaker endpoint variant - The resource type is variant and the unique identifier is the resource ID. Example: endpoint/my-end-point/variant/KMeansClustering.

  • Custom resources are not supported with a resource type. This parameter must specify the OutputValue from the CloudFormation template stack used to access the resources. The unique identifier is defined by the service provider. More information is available in our GitHub repository.

  • Amazon Comprehend document classification endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example: arn:aws:comprehend:us-west-2:123456789012:document-classifier-endpoint/EXAMPLE.

  • Amazon Comprehend entity recognizer endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example: arn:aws:comprehend:us-west-2:123456789012:entity-recognizer-endpoint/EXAMPLE.

  • Lambda provisioned concurrency - The resource type is function and the unique identifier is the function name with a function version or alias name suffix that is not $LATEST. Example: function:my-function:prod or function:my-function:1.

  • Amazon Keyspaces table - The resource type is table and the unique identifier is the table name. Example: keyspace/mykeyspace/table/mytable.

  • Amazon MSK cluster - The resource type and unique identifier are specified using the cluster ARN. Example: arn:aws:kafka:us-east-1:123456789012:cluster/demo-cluster-1/6357e0b2-0e6a-4b86-a0b4-70df934c2e31-5.

  • Amazon ElastiCache replication group - The resource type is replication-group and the unique identifier is the replication group name. Example: replication-group/mycluster.

  • Amazon ElastiCache cache cluster - The resource type is cache-cluster and the unique identifier is the cache cluster name. Example: cache-cluster/mycluster.

  • Neptune cluster - The resource type is cluster and the unique identifier is the cluster name. Example: cluster:mycluster.

  • SageMaker serverless endpoint - The resource type is variant and the unique identifier is the resource ID. Example: endpoint/my-end-point/variant/KMeansClustering.

  • SageMaker inference component - The resource type is inference-component and the unique identifier is the resource ID. Example: inference-component/my-inference-component.

  • Pool of WorkSpaces - The resource type is workspacespool and the unique identifier is the pool ID. Example: workspacespool/wspool-123456.

This field is required.
Source

pub fn set_resource_id(self, input: Option<String>) -> Self

The identifier of the resource associated with the scaling policy. This string consists of the resource type and unique identifier.

  • ECS service - The resource type is service and the unique identifier is the cluster name and service name. Example: service/my-cluster/my-service.

  • Spot Fleet - The resource type is spot-fleet-request and the unique identifier is the Spot Fleet request ID. Example: spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE.

  • EMR cluster - The resource type is instancegroup and the unique identifier is the cluster ID and instance group ID. Example: instancegroup/j-2EEZNYKUA1NTV/ig-1791Y4E1L8YI0.

  • AppStream 2.0 fleet - The resource type is fleet and the unique identifier is the fleet name. Example: fleet/sample-fleet.

  • DynamoDB table - The resource type is table and the unique identifier is the table name. Example: table/my-table.

  • DynamoDB global secondary index - The resource type is index and the unique identifier is the index name. Example: table/my-table/index/my-table-index.

  • Aurora DB cluster - The resource type is cluster and the unique identifier is the cluster name. Example: cluster:my-db-cluster.

  • SageMaker endpoint variant - The resource type is variant and the unique identifier is the resource ID. Example: endpoint/my-end-point/variant/KMeansClustering.

  • Custom resources are not supported with a resource type. This parameter must specify the OutputValue from the CloudFormation template stack used to access the resources. The unique identifier is defined by the service provider. More information is available in our GitHub repository.

  • Amazon Comprehend document classification endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example: arn:aws:comprehend:us-west-2:123456789012:document-classifier-endpoint/EXAMPLE.

  • Amazon Comprehend entity recognizer endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example: arn:aws:comprehend:us-west-2:123456789012:entity-recognizer-endpoint/EXAMPLE.

  • Lambda provisioned concurrency - The resource type is function and the unique identifier is the function name with a function version or alias name suffix that is not $LATEST. Example: function:my-function:prod or function:my-function:1.

  • Amazon Keyspaces table - The resource type is table and the unique identifier is the table name. Example: keyspace/mykeyspace/table/mytable.

  • Amazon MSK cluster - The resource type and unique identifier are specified using the cluster ARN. Example: arn:aws:kafka:us-east-1:123456789012:cluster/demo-cluster-1/6357e0b2-0e6a-4b86-a0b4-70df934c2e31-5.

  • Amazon ElastiCache replication group - The resource type is replication-group and the unique identifier is the replication group name. Example: replication-group/mycluster.

  • Amazon ElastiCache cache cluster - The resource type is cache-cluster and the unique identifier is the cache cluster name. Example: cache-cluster/mycluster.

  • Neptune cluster - The resource type is cluster and the unique identifier is the cluster name. Example: cluster:mycluster.

  • SageMaker serverless endpoint - The resource type is variant and the unique identifier is the resource ID. Example: endpoint/my-end-point/variant/KMeansClustering.

  • SageMaker inference component - The resource type is inference-component and the unique identifier is the resource ID. Example: inference-component/my-inference-component.

  • Pool of WorkSpaces - The resource type is workspacespool and the unique identifier is the pool ID. Example: workspacespool/wspool-123456.

Source

pub fn get_resource_id(&self) -> &Option<String>

The identifier of the resource associated with the scaling policy. This string consists of the resource type and unique identifier.

  • ECS service - The resource type is service and the unique identifier is the cluster name and service name. Example: service/my-cluster/my-service.

  • Spot Fleet - The resource type is spot-fleet-request and the unique identifier is the Spot Fleet request ID. Example: spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE.

  • EMR cluster - The resource type is instancegroup and the unique identifier is the cluster ID and instance group ID. Example: instancegroup/j-2EEZNYKUA1NTV/ig-1791Y4E1L8YI0.

  • AppStream 2.0 fleet - The resource type is fleet and the unique identifier is the fleet name. Example: fleet/sample-fleet.

  • DynamoDB table - The resource type is table and the unique identifier is the table name. Example: table/my-table.

  • DynamoDB global secondary index - The resource type is index and the unique identifier is the index name. Example: table/my-table/index/my-table-index.

  • Aurora DB cluster - The resource type is cluster and the unique identifier is the cluster name. Example: cluster:my-db-cluster.

  • SageMaker endpoint variant - The resource type is variant and the unique identifier is the resource ID. Example: endpoint/my-end-point/variant/KMeansClustering.

  • Custom resources are not supported with a resource type. This parameter must specify the OutputValue from the CloudFormation template stack used to access the resources. The unique identifier is defined by the service provider. More information is available in our GitHub repository.

  • Amazon Comprehend document classification endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example: arn:aws:comprehend:us-west-2:123456789012:document-classifier-endpoint/EXAMPLE.

  • Amazon Comprehend entity recognizer endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example: arn:aws:comprehend:us-west-2:123456789012:entity-recognizer-endpoint/EXAMPLE.

  • Lambda provisioned concurrency - The resource type is function and the unique identifier is the function name with a function version or alias name suffix that is not $LATEST. Example: function:my-function:prod or function:my-function:1.

  • Amazon Keyspaces table - The resource type is table and the unique identifier is the table name. Example: keyspace/mykeyspace/table/mytable.

  • Amazon MSK cluster - The resource type and unique identifier are specified using the cluster ARN. Example: arn:aws:kafka:us-east-1:123456789012:cluster/demo-cluster-1/6357e0b2-0e6a-4b86-a0b4-70df934c2e31-5.

  • Amazon ElastiCache replication group - The resource type is replication-group and the unique identifier is the replication group name. Example: replication-group/mycluster.

  • Amazon ElastiCache cache cluster - The resource type is cache-cluster and the unique identifier is the cache cluster name. Example: cache-cluster/mycluster.

  • Neptune cluster - The resource type is cluster and the unique identifier is the cluster name. Example: cluster:mycluster.

  • SageMaker serverless endpoint - The resource type is variant and the unique identifier is the resource ID. Example: endpoint/my-end-point/variant/KMeansClustering.

  • SageMaker inference component - The resource type is inference-component and the unique identifier is the resource ID. Example: inference-component/my-inference-component.

  • Pool of WorkSpaces - The resource type is workspacespool and the unique identifier is the pool ID. Example: workspacespool/wspool-123456.

Source

pub fn scalable_dimension(self, input: ScalableDimension) -> Self

The scalable dimension. This string consists of the service namespace, resource type, and scaling property.

  • ecs:service:DesiredCount - The task count of an ECS service.

  • elasticmapreduce:instancegroup:InstanceCount - The instance count of an EMR Instance Group.

  • ec2:spot-fleet-request:TargetCapacity - The target capacity of a Spot Fleet.

  • appstream:fleet:DesiredCapacity - The capacity of an AppStream 2.0 fleet.

  • dynamodb:table:ReadCapacityUnits - The provisioned read capacity for a DynamoDB table.

  • dynamodb:table:WriteCapacityUnits - The provisioned write capacity for a DynamoDB table.

  • dynamodb:index:ReadCapacityUnits - The provisioned read capacity for a DynamoDB global secondary index.

  • dynamodb:index:WriteCapacityUnits - The provisioned write capacity for a DynamoDB global secondary index.

  • rds:cluster:ReadReplicaCount - The count of Aurora Replicas in an Aurora DB cluster. Available for Aurora MySQL-compatible edition and Aurora PostgreSQL-compatible edition.

  • sagemaker:variant:DesiredInstanceCount - The number of EC2 instances for a SageMaker model endpoint variant.

  • custom-resource:ResourceType:Property - The scalable dimension for a custom resource provided by your own application or service.

  • comprehend:document-classifier-endpoint:DesiredInferenceUnits - The number of inference units for an Amazon Comprehend document classification endpoint.

  • comprehend:entity-recognizer-endpoint:DesiredInferenceUnits - The number of inference units for an Amazon Comprehend entity recognizer endpoint.

  • lambda:function:ProvisionedConcurrency - The provisioned concurrency for a Lambda function.

  • cassandra:table:ReadCapacityUnits - The provisioned read capacity for an Amazon Keyspaces table.

  • cassandra:table:WriteCapacityUnits - The provisioned write capacity for an Amazon Keyspaces table.

  • kafka:broker-storage:VolumeSize - The provisioned volume size (in GiB) for brokers in an Amazon MSK cluster.

  • elasticache:cache-cluster:Nodes - The number of nodes for an Amazon ElastiCache cache cluster.

  • elasticache:replication-group:NodeGroups - The number of node groups for an Amazon ElastiCache replication group.

  • elasticache:replication-group:Replicas - The number of replicas per node group for an Amazon ElastiCache replication group.

  • neptune:cluster:ReadReplicaCount - The count of read replicas in an Amazon Neptune DB cluster.

  • sagemaker:variant:DesiredProvisionedConcurrency - The provisioned concurrency for a SageMaker serverless endpoint.

  • sagemaker:inference-component:DesiredCopyCount - The number of copies across an endpoint for a SageMaker inference component.

  • workspaces:workspacespool:DesiredUserSessions - The number of user sessions for the WorkSpaces in the pool.

Source

pub fn set_scalable_dimension(self, input: Option<ScalableDimension>) -> Self

The scalable dimension. This string consists of the service namespace, resource type, and scaling property.

  • ecs:service:DesiredCount - The task count of an ECS service.

  • elasticmapreduce:instancegroup:InstanceCount - The instance count of an EMR Instance Group.

  • ec2:spot-fleet-request:TargetCapacity - The target capacity of a Spot Fleet.

  • appstream:fleet:DesiredCapacity - The capacity of an AppStream 2.0 fleet.

  • dynamodb:table:ReadCapacityUnits - The provisioned read capacity for a DynamoDB table.

  • dynamodb:table:WriteCapacityUnits - The provisioned write capacity for a DynamoDB table.

  • dynamodb:index:ReadCapacityUnits - The provisioned read capacity for a DynamoDB global secondary index.

  • dynamodb:index:WriteCapacityUnits - The provisioned write capacity for a DynamoDB global secondary index.

  • rds:cluster:ReadReplicaCount - The count of Aurora Replicas in an Aurora DB cluster. Available for Aurora MySQL-compatible edition and Aurora PostgreSQL-compatible edition.

  • sagemaker:variant:DesiredInstanceCount - The number of EC2 instances for a SageMaker model endpoint variant.

  • custom-resource:ResourceType:Property - The scalable dimension for a custom resource provided by your own application or service.

  • comprehend:document-classifier-endpoint:DesiredInferenceUnits - The number of inference units for an Amazon Comprehend document classification endpoint.

  • comprehend:entity-recognizer-endpoint:DesiredInferenceUnits - The number of inference units for an Amazon Comprehend entity recognizer endpoint.

  • lambda:function:ProvisionedConcurrency - The provisioned concurrency for a Lambda function.

  • cassandra:table:ReadCapacityUnits - The provisioned read capacity for an Amazon Keyspaces table.

  • cassandra:table:WriteCapacityUnits - The provisioned write capacity for an Amazon Keyspaces table.

  • kafka:broker-storage:VolumeSize - The provisioned volume size (in GiB) for brokers in an Amazon MSK cluster.

  • elasticache:cache-cluster:Nodes - The number of nodes for an Amazon ElastiCache cache cluster.

  • elasticache:replication-group:NodeGroups - The number of node groups for an Amazon ElastiCache replication group.

  • elasticache:replication-group:Replicas - The number of replicas per node group for an Amazon ElastiCache replication group.

  • neptune:cluster:ReadReplicaCount - The count of read replicas in an Amazon Neptune DB cluster.

  • sagemaker:variant:DesiredProvisionedConcurrency - The provisioned concurrency for a SageMaker serverless endpoint.

  • sagemaker:inference-component:DesiredCopyCount - The number of copies across an endpoint for a SageMaker inference component.

  • workspaces:workspacespool:DesiredUserSessions - The number of user sessions for the WorkSpaces in the pool.

Source

pub fn get_scalable_dimension(&self) -> &Option<ScalableDimension>

The scalable dimension. This string consists of the service namespace, resource type, and scaling property.

  • ecs:service:DesiredCount - The task count of an ECS service.

  • elasticmapreduce:instancegroup:InstanceCount - The instance count of an EMR Instance Group.

  • ec2:spot-fleet-request:TargetCapacity - The target capacity of a Spot Fleet.

  • appstream:fleet:DesiredCapacity - The capacity of an AppStream 2.0 fleet.

  • dynamodb:table:ReadCapacityUnits - The provisioned read capacity for a DynamoDB table.

  • dynamodb:table:WriteCapacityUnits - The provisioned write capacity for a DynamoDB table.

  • dynamodb:index:ReadCapacityUnits - The provisioned read capacity for a DynamoDB global secondary index.

  • dynamodb:index:WriteCapacityUnits - The provisioned write capacity for a DynamoDB global secondary index.

  • rds:cluster:ReadReplicaCount - The count of Aurora Replicas in an Aurora DB cluster. Available for Aurora MySQL-compatible edition and Aurora PostgreSQL-compatible edition.

  • sagemaker:variant:DesiredInstanceCount - The number of EC2 instances for a SageMaker model endpoint variant.

  • custom-resource:ResourceType:Property - The scalable dimension for a custom resource provided by your own application or service.

  • comprehend:document-classifier-endpoint:DesiredInferenceUnits - The number of inference units for an Amazon Comprehend document classification endpoint.

  • comprehend:entity-recognizer-endpoint:DesiredInferenceUnits - The number of inference units for an Amazon Comprehend entity recognizer endpoint.

  • lambda:function:ProvisionedConcurrency - The provisioned concurrency for a Lambda function.

  • cassandra:table:ReadCapacityUnits - The provisioned read capacity for an Amazon Keyspaces table.

  • cassandra:table:WriteCapacityUnits - The provisioned write capacity for an Amazon Keyspaces table.

  • kafka:broker-storage:VolumeSize - The provisioned volume size (in GiB) for brokers in an Amazon MSK cluster.

  • elasticache:cache-cluster:Nodes - The number of nodes for an Amazon ElastiCache cache cluster.

  • elasticache:replication-group:NodeGroups - The number of node groups for an Amazon ElastiCache replication group.

  • elasticache:replication-group:Replicas - The number of replicas per node group for an Amazon ElastiCache replication group.

  • neptune:cluster:ReadReplicaCount - The count of read replicas in an Amazon Neptune DB cluster.

  • sagemaker:variant:DesiredProvisionedConcurrency - The provisioned concurrency for a SageMaker serverless endpoint.

  • sagemaker:inference-component:DesiredCopyCount - The number of copies across an endpoint for a SageMaker inference component.

  • workspaces:workspacespool:DesiredUserSessions - The number of user sessions for the WorkSpaces in the pool.

Source

pub fn start_time(self, input: DateTime) -> Self

The date and time that the action is scheduled to begin, in UTC.

Source

pub fn set_start_time(self, input: Option<DateTime>) -> Self

The date and time that the action is scheduled to begin, in UTC.

Source

pub fn get_start_time(&self) -> &Option<DateTime>

The date and time that the action is scheduled to begin, in UTC.

Source

pub fn end_time(self, input: DateTime) -> Self

The date and time that the action is scheduled to end, in UTC.

Source

pub fn set_end_time(self, input: Option<DateTime>) -> Self

The date and time that the action is scheduled to end, in UTC.

Source

pub fn get_end_time(&self) -> &Option<DateTime>

The date and time that the action is scheduled to end, in UTC.

Source

pub fn scalable_target_action(self, input: ScalableTargetAction) -> Self

The new minimum and maximum capacity. You can set both values or just one. At the scheduled time, if the current capacity is below the minimum capacity, Application Auto Scaling scales out to the minimum capacity. If the current capacity is above the maximum capacity, Application Auto Scaling scales in to the maximum capacity.

Source

pub fn set_scalable_target_action( self, input: Option<ScalableTargetAction>, ) -> Self

The new minimum and maximum capacity. You can set both values or just one. At the scheduled time, if the current capacity is below the minimum capacity, Application Auto Scaling scales out to the minimum capacity. If the current capacity is above the maximum capacity, Application Auto Scaling scales in to the maximum capacity.

Source

pub fn get_scalable_target_action(&self) -> &Option<ScalableTargetAction>

The new minimum and maximum capacity. You can set both values or just one. At the scheduled time, if the current capacity is below the minimum capacity, Application Auto Scaling scales out to the minimum capacity. If the current capacity is above the maximum capacity, Application Auto Scaling scales in to the maximum capacity.

Source

pub fn creation_time(self, input: DateTime) -> Self

The date and time that the scheduled action was created.

This field is required.
Source

pub fn set_creation_time(self, input: Option<DateTime>) -> Self

The date and time that the scheduled action was created.

Source

pub fn get_creation_time(&self) -> &Option<DateTime>

The date and time that the scheduled action was created.

Source

pub fn build(self) -> Result<ScheduledAction, BuildError>

Consumes the builder and constructs a ScheduledAction. This method will fail if any of the following fields are not set:

Trait Implementations§

Source§

impl Clone for ScheduledActionBuilder

Source§

fn clone(&self) -> ScheduledActionBuilder

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for ScheduledActionBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for ScheduledActionBuilder

Source§

fn default() -> ScheduledActionBuilder

Returns the “default value” for a type. Read more
Source§

impl PartialEq for ScheduledActionBuilder

Source§

fn eq(&self, other: &ScheduledActionBuilder) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for ScheduledActionBuilder

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,