aws_sdk_appconfig/operation/create_deployment_strategy/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_deployment_strategy::_create_deployment_strategy_output::CreateDeploymentStrategyOutputBuilder;
3
4pub use crate::operation::create_deployment_strategy::_create_deployment_strategy_input::CreateDeploymentStrategyInputBuilder;
5
6impl crate::operation::create_deployment_strategy::builders::CreateDeploymentStrategyInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_deployment_strategy();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreateDeploymentStrategy`.
24///
25/// <p>Creates a deployment strategy that defines important criteria for rolling out your configuration to the designated targets. A deployment strategy includes the overall duration required, a percentage of targets to receive the deployment during each interval, an algorithm that defines how percentage grows, and bake time.</p>
26#[derive(::std::clone::Clone, ::std::fmt::Debug)]
27pub struct CreateDeploymentStrategyFluentBuilder {
28 handle: ::std::sync::Arc<crate::client::Handle>,
29 inner: crate::operation::create_deployment_strategy::builders::CreateDeploymentStrategyInputBuilder,
30 config_override: ::std::option::Option<crate::config::Builder>,
31}
32impl
33 crate::client::customize::internal::CustomizableSend<
34 crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
35 crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
36 > for CreateDeploymentStrategyFluentBuilder
37{
38 fn send(
39 self,
40 config_override: crate::config::Builder,
41 ) -> crate::client::customize::internal::BoxFuture<
42 crate::client::customize::internal::SendResult<
43 crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
44 crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
45 >,
46 > {
47 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
48 }
49}
50impl CreateDeploymentStrategyFluentBuilder {
51 /// Creates a new `CreateDeploymentStrategyFluentBuilder`.
52 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
53 Self {
54 handle,
55 inner: ::std::default::Default::default(),
56 config_override: ::std::option::Option::None,
57 }
58 }
59 /// Access the CreateDeploymentStrategy as a reference.
60 pub fn as_input(&self) -> &crate::operation::create_deployment_strategy::builders::CreateDeploymentStrategyInputBuilder {
61 &self.inner
62 }
63 /// Sends the request and returns the response.
64 ///
65 /// If an error occurs, an `SdkError` will be returned with additional details that
66 /// can be matched against.
67 ///
68 /// By default, any retryable failures will be retried twice. Retry behavior
69 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
70 /// set when configuring the client.
71 pub async fn send(
72 self,
73 ) -> ::std::result::Result<
74 crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
75 ::aws_smithy_runtime_api::client::result::SdkError<
76 crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
77 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
78 >,
79 > {
80 let input = self
81 .inner
82 .build()
83 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
84 let runtime_plugins = crate::operation::create_deployment_strategy::CreateDeploymentStrategy::operation_runtime_plugins(
85 self.handle.runtime_plugins.clone(),
86 &self.handle.conf,
87 self.config_override,
88 );
89 crate::operation::create_deployment_strategy::CreateDeploymentStrategy::orchestrate(&runtime_plugins, input).await
90 }
91
92 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
93 pub fn customize(
94 self,
95 ) -> crate::client::customize::CustomizableOperation<
96 crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
97 crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
98 Self,
99 > {
100 crate::client::customize::CustomizableOperation::new(self)
101 }
102 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
103 self.set_config_override(::std::option::Option::Some(config_override.into()));
104 self
105 }
106
107 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
108 self.config_override = config_override;
109 self
110 }
111 /// <p>A name for the deployment strategy.</p>
112 pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
113 self.inner = self.inner.name(input.into());
114 self
115 }
116 /// <p>A name for the deployment strategy.</p>
117 pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
118 self.inner = self.inner.set_name(input);
119 self
120 }
121 /// <p>A name for the deployment strategy.</p>
122 pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
123 self.inner.get_name()
124 }
125 /// <p>A description of the deployment strategy.</p>
126 pub fn description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
127 self.inner = self.inner.description(input.into());
128 self
129 }
130 /// <p>A description of the deployment strategy.</p>
131 pub fn set_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
132 self.inner = self.inner.set_description(input);
133 self
134 }
135 /// <p>A description of the deployment strategy.</p>
136 pub fn get_description(&self) -> &::std::option::Option<::std::string::String> {
137 self.inner.get_description()
138 }
139 /// <p>Total amount of time for a deployment to last.</p>
140 pub fn deployment_duration_in_minutes(mut self, input: i32) -> Self {
141 self.inner = self.inner.deployment_duration_in_minutes(input);
142 self
143 }
144 /// <p>Total amount of time for a deployment to last.</p>
145 pub fn set_deployment_duration_in_minutes(mut self, input: ::std::option::Option<i32>) -> Self {
146 self.inner = self.inner.set_deployment_duration_in_minutes(input);
147 self
148 }
149 /// <p>Total amount of time for a deployment to last.</p>
150 pub fn get_deployment_duration_in_minutes(&self) -> &::std::option::Option<i32> {
151 self.inner.get_deployment_duration_in_minutes()
152 }
153 /// <p>Specifies the amount of time AppConfig monitors for Amazon CloudWatch alarms after the configuration has been deployed to 100% of its targets, before considering the deployment to be complete. If an alarm is triggered during this time, AppConfig rolls back the deployment. You must configure permissions for AppConfig to roll back based on CloudWatch alarms. For more information, see <a href="https://docs.aws.amazon.com/appconfig/latest/userguide/getting-started-with-appconfig-cloudwatch-alarms-permissions.html">Configuring permissions for rollback based on Amazon CloudWatch alarms</a> in the <i>AppConfig User Guide</i>.</p>
154 pub fn final_bake_time_in_minutes(mut self, input: i32) -> Self {
155 self.inner = self.inner.final_bake_time_in_minutes(input);
156 self
157 }
158 /// <p>Specifies the amount of time AppConfig monitors for Amazon CloudWatch alarms after the configuration has been deployed to 100% of its targets, before considering the deployment to be complete. If an alarm is triggered during this time, AppConfig rolls back the deployment. You must configure permissions for AppConfig to roll back based on CloudWatch alarms. For more information, see <a href="https://docs.aws.amazon.com/appconfig/latest/userguide/getting-started-with-appconfig-cloudwatch-alarms-permissions.html">Configuring permissions for rollback based on Amazon CloudWatch alarms</a> in the <i>AppConfig User Guide</i>.</p>
159 pub fn set_final_bake_time_in_minutes(mut self, input: ::std::option::Option<i32>) -> Self {
160 self.inner = self.inner.set_final_bake_time_in_minutes(input);
161 self
162 }
163 /// <p>Specifies the amount of time AppConfig monitors for Amazon CloudWatch alarms after the configuration has been deployed to 100% of its targets, before considering the deployment to be complete. If an alarm is triggered during this time, AppConfig rolls back the deployment. You must configure permissions for AppConfig to roll back based on CloudWatch alarms. For more information, see <a href="https://docs.aws.amazon.com/appconfig/latest/userguide/getting-started-with-appconfig-cloudwatch-alarms-permissions.html">Configuring permissions for rollback based on Amazon CloudWatch alarms</a> in the <i>AppConfig User Guide</i>.</p>
164 pub fn get_final_bake_time_in_minutes(&self) -> &::std::option::Option<i32> {
165 self.inner.get_final_bake_time_in_minutes()
166 }
167 /// <p>The percentage of targets to receive a deployed configuration during each interval.</p>
168 pub fn growth_factor(mut self, input: f32) -> Self {
169 self.inner = self.inner.growth_factor(input);
170 self
171 }
172 /// <p>The percentage of targets to receive a deployed configuration during each interval.</p>
173 pub fn set_growth_factor(mut self, input: ::std::option::Option<f32>) -> Self {
174 self.inner = self.inner.set_growth_factor(input);
175 self
176 }
177 /// <p>The percentage of targets to receive a deployed configuration during each interval.</p>
178 pub fn get_growth_factor(&self) -> &::std::option::Option<f32> {
179 self.inner.get_growth_factor()
180 }
181 /// <p>The algorithm used to define how percentage grows over time. AppConfig supports the following growth types:</p>
182 /// <p><b>Linear</b>: For this type, AppConfig processes the deployment by dividing the total number of targets by the value specified for <code>Step percentage</code>. For example, a linear deployment that uses a <code>Step percentage</code> of 10 deploys the configuration to 10 percent of the hosts. After those deployments are complete, the system deploys the configuration to the next 10 percent. This continues until 100% of the targets have successfully received the configuration.</p>
183 /// <p><b>Exponential</b>: For this type, AppConfig processes the deployment exponentially using the following formula: <code>G*(2^N)</code>. In this formula, <code>G</code> is the growth factor specified by the user and <code>N</code> is the number of steps until the configuration is deployed to all targets. For example, if you specify a growth factor of 2, then the system rolls out the configuration as follows:</p>
184 /// <p><code>2*(2^0)</code></p>
185 /// <p><code>2*(2^1)</code></p>
186 /// <p><code>2*(2^2)</code></p>
187 /// <p>Expressed numerically, the deployment rolls out as follows: 2% of the targets, 4% of the targets, 8% of the targets, and continues until the configuration has been deployed to all targets.</p>
188 pub fn growth_type(mut self, input: crate::types::GrowthType) -> Self {
189 self.inner = self.inner.growth_type(input);
190 self
191 }
192 /// <p>The algorithm used to define how percentage grows over time. AppConfig supports the following growth types:</p>
193 /// <p><b>Linear</b>: For this type, AppConfig processes the deployment by dividing the total number of targets by the value specified for <code>Step percentage</code>. For example, a linear deployment that uses a <code>Step percentage</code> of 10 deploys the configuration to 10 percent of the hosts. After those deployments are complete, the system deploys the configuration to the next 10 percent. This continues until 100% of the targets have successfully received the configuration.</p>
194 /// <p><b>Exponential</b>: For this type, AppConfig processes the deployment exponentially using the following formula: <code>G*(2^N)</code>. In this formula, <code>G</code> is the growth factor specified by the user and <code>N</code> is the number of steps until the configuration is deployed to all targets. For example, if you specify a growth factor of 2, then the system rolls out the configuration as follows:</p>
195 /// <p><code>2*(2^0)</code></p>
196 /// <p><code>2*(2^1)</code></p>
197 /// <p><code>2*(2^2)</code></p>
198 /// <p>Expressed numerically, the deployment rolls out as follows: 2% of the targets, 4% of the targets, 8% of the targets, and continues until the configuration has been deployed to all targets.</p>
199 pub fn set_growth_type(mut self, input: ::std::option::Option<crate::types::GrowthType>) -> Self {
200 self.inner = self.inner.set_growth_type(input);
201 self
202 }
203 /// <p>The algorithm used to define how percentage grows over time. AppConfig supports the following growth types:</p>
204 /// <p><b>Linear</b>: For this type, AppConfig processes the deployment by dividing the total number of targets by the value specified for <code>Step percentage</code>. For example, a linear deployment that uses a <code>Step percentage</code> of 10 deploys the configuration to 10 percent of the hosts. After those deployments are complete, the system deploys the configuration to the next 10 percent. This continues until 100% of the targets have successfully received the configuration.</p>
205 /// <p><b>Exponential</b>: For this type, AppConfig processes the deployment exponentially using the following formula: <code>G*(2^N)</code>. In this formula, <code>G</code> is the growth factor specified by the user and <code>N</code> is the number of steps until the configuration is deployed to all targets. For example, if you specify a growth factor of 2, then the system rolls out the configuration as follows:</p>
206 /// <p><code>2*(2^0)</code></p>
207 /// <p><code>2*(2^1)</code></p>
208 /// <p><code>2*(2^2)</code></p>
209 /// <p>Expressed numerically, the deployment rolls out as follows: 2% of the targets, 4% of the targets, 8% of the targets, and continues until the configuration has been deployed to all targets.</p>
210 pub fn get_growth_type(&self) -> &::std::option::Option<crate::types::GrowthType> {
211 self.inner.get_growth_type()
212 }
213 /// <p>Save the deployment strategy to a Systems Manager (SSM) document.</p>
214 pub fn replicate_to(mut self, input: crate::types::ReplicateTo) -> Self {
215 self.inner = self.inner.replicate_to(input);
216 self
217 }
218 /// <p>Save the deployment strategy to a Systems Manager (SSM) document.</p>
219 pub fn set_replicate_to(mut self, input: ::std::option::Option<crate::types::ReplicateTo>) -> Self {
220 self.inner = self.inner.set_replicate_to(input);
221 self
222 }
223 /// <p>Save the deployment strategy to a Systems Manager (SSM) document.</p>
224 pub fn get_replicate_to(&self) -> &::std::option::Option<crate::types::ReplicateTo> {
225 self.inner.get_replicate_to()
226 }
227 ///
228 /// Adds a key-value pair to `Tags`.
229 ///
230 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
231 ///
232 /// <p>Metadata to assign to the deployment strategy. Tags help organize and categorize your AppConfig resources. Each tag consists of a key and an optional value, both of which you define.</p>
233 pub fn tags(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
234 self.inner = self.inner.tags(k.into(), v.into());
235 self
236 }
237 /// <p>Metadata to assign to the deployment strategy. Tags help organize and categorize your AppConfig resources. Each tag consists of a key and an optional value, both of which you define.</p>
238 pub fn set_tags(mut self, input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>) -> Self {
239 self.inner = self.inner.set_tags(input);
240 self
241 }
242 /// <p>Metadata to assign to the deployment strategy. Tags help organize and categorize your AppConfig resources. Each tag consists of a key and an optional value, both of which you define.</p>
243 pub fn get_tags(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
244 self.inner.get_tags()
245 }
246}